
1

Arduino-Based Dataloggers: Hardware and Software

David R. Brooks

Institute for Earth Science Research and Education

V 1.3, February, 2016

© 2014, 2015, 2016

An introduction to Arduino microcontrollers and their programming language, with the

goal of building a high-resolution datalogger to record data from external sensors.

This document makes use of code and other material from arduino.com, adafruit.com,

sparkfun.com, and various other sources. Arduino material is open source and in the public

domain. All other non-original material is referenced as appropriate. This document is

protected under a Creative Commons Attribution-NonCommercial-NoDerivative 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which means that it can be

used for any non-commercial purpose, with attribution, but cannot be redistributed with

changes without permission from the author. Please provide appropriate references for any

such uses, including IESRE's URL, www.instesre.org. I would appreciate knowing about

such uses. Please address questions and comments via e-mail to brooksdr@instesre.org.

A file containing the text of all sketches used in this document can be downloaded at

www.instesre.org/ProgrammingGuideSketches.txt.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.instesre.org/
mailto:brooksdr@instesre.org
http://www.instesre.org/

2

CONTENTS

1. INTRODUCTION 3

2. THE ARDUINO PROJECT DEVELOPMENT ENVIRONMENT 4

 2.1 Up and Running… 4

2.2 The Arduino Programming Language 5

2.2.1 The minimum sketch 6

2.2.2 Data type examples, type conversions, and operators 7

2.2.3 Conditional and repetitive execution 9

2.2.4 Some other program flow control statements 14

2.2.5 Serial communication and displaying output 15

2.2.6 Math functions 16

2.2.7 Arrays 19

2.2.8 User-defined functions 19

2.3 Digital and Analog I/O 23

 2.3.1 Digital pins 24

 2.3.2 Analog pins 25

3. AN ARDUINO-BASED DATALOGGER 29

 3.1 Using the Adafruit Datalogger Shield to Explore a Datalogger Application 29

 3.1.1 Real time clock (RTC) 30

 3.1.2 SD card interface 31

 3.1.3 A simple data logging program 34

 3.1.4 Additional software considerations for a data logging application 36

3.1.5 Putting it all together with complete data logging applications 40

3.2 A High-Resolution Datalogger 48

3.2.1 Hardware 48

3.2.2 Programming 50

4. SOME ADDITIONAL CONSIDERATIONS 59

4.1 Expanding the Number of High-Resolution Channels 59

4.2 Enclosures for Your Arduino Datalogger 59

4.3 Powering Your Arduino Datalogger 59

3

1. INTRODUCTION

In recent years, there has been an explosion of interest in microcontrollers. One of the most successful

and widely used systems is the Arduino, started as a student project in 2005 at the Italian Interaction

Design Institute Ivrea. Since then, that Institute has closed but the Arduino project lived on. Now, this

open-source hardware/software system has spawned numerous "cloned" versions and given birth to a new

and rapidly growing industry devoted to making use of its capabilities. I believe it is reasonable to equate

the impact of the microcontroller revolution in the early 21
st
 century to the personal computer revolution

at the end of the 20
th

 century. It might even be fair to conclude that being comfortable working with

microcontrollers is as essential for any technically competent individual in the 21
st
 century as "personal

computing skills" (which many of us now take for granted) were in the late 20
th
 century.

Because microcontrollers provide essentially unlimited opportunities for interfacing with

hardware, skills can be developed in many ways with projects ranging from the frivolous to the profound.

This document is not intended as a general-purpose Arduino reference guide, but only as a record (with

apologies for any errors from a "newbie") of the path I followed to develop an Arduino-based high-

resolution datalogger. I started with a scientific programming background, but with absolutely no

previous microcontroller programming experience. The document includes many links to online sources

which I found essential for acquiring the information I needed to reach my goal.

Here is the hardware used for this project.

Prices from www.adafruit.com and

www.sparkfun.com are approximate as of July 2014.

Quantity discounts may be available.

• Arduino Uno R3 microcontroller (ID 50, $25) or

Adafruit Arduino Uno R3 starter pack (PID 68,

$65.00)

• Adafruit data logging shield with light and

temperature sensors (PID 249, $37.50), and, optionally, additional data logging shields (PID 1141, $20)

• Adafruit ADS1115 16-bit analog-to-digital conversion (ADC) board (ID1085, $15)

• Sparkfun Arduino Pro microcontroller (DEV-10915, $15)

• Sparkfun FTDI board (DEV-09716, $15)

• A few other components for testing code, as described in figures below

http://arduino.cc/en/Main/arduinoBoardUno contains a description of the "classic" Uno R3 board.

http://www.gammon.com.au/forum/?id=11473 has a useful pin diagram.

The software component of any Arduino project requires some general programming knowledge

plus details about Arduino hardware and the Arduino programming language. If you already have

experience programming with C/C++ or related languages, you may find much of this document to be

unnecessarily tedious and you will be able to skip over large portions of it, with perhaps some occasional

detours (here or online) to check specific features of the Arduino language.

 Arduino-compatible boards and accessories like the Arduino Pro are available from

www.sparkfun.com and other sources. Some of these boards have the advantage of using less power than

the Uno R3, but I recommend the Uno R3 board as a starting point to learn about using these

microcontrollers.

Figure 1. Arduino Uno R3 microcontroller.

http://www.adafruit.com/
http://www.sparkfun.com/
http://arduino.cc/en/Main/arduinoBoardUnod
http://www.gammon.com.au/forum/?id=11473
http://www.sparkfun.com/

4

2. THE ARDUINO INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

2.1 Up and Running…

The Arduino project development environment, or integrated development environment (IDE) is

a free download for Windows, Mac, or Linux systems from http://arduino.cc/en/main/software. There is

no point reading this document until you have installed the IDE software. The work described in this

document has been done on a Windows XP computer. Once installed in an Arduino folder, everything is

in place to try some of the examples in the \examples folder, which will be created when you install

the IDE. Connect the Arduino board to your computer through a USB port, which will provide enough

power for the Arduino board to operate without an external power supply. Note that the Arduino board

uses relatively a lot of power compared, for example, to a commercial datalogger such as the Onset

Computer Corporation's UX120-006M 4-channel voltage logger

(http://www.onsetcomp.com/products/data-loggers/ux120-series), which will run for many months on two

AAA batteries. An Arduino (plus some accessories) will run continuously from a powered USB port, but

you will need a relatively hefty battery supply to run an Arduino continuously on its own for extended

periods of time. (See the Section 4.3 for more details.)

 The arduino.exe file opens the IDE with a window for writing code. The source code for any

Arduino application has a .ino extension. Every source code file is contained in its own folder, with the

same name as the .ino file. This folder is created automatically whenever you create a new code file. In

Arduino-speak, source code written using English/math-like instructions is called a "sketch." (The name

is based on The Arduino language's origins in Processing, a programming environment for graphic

design.) As a first example, open the Blink.ino sketch file found in the

\examples\01.Basics\Blink folder. Choose Upload from the file menu. The code will be

compiled into machine language and sent to the Arduino. If there are errors, messages will be displayed.

As is often the case, error messages may or may not be helpful for fixing your code! If everything is

working, the LED on the Arduino board should blink – one second on and one second off. If this simple

sketch works, it is an indication that software and hardware are working together as required.

 Note that you cannot "turn off" a program once it is sent to the Arduino. If you remove the power

(either by removing the USB cable or by unplugging a power supply), the program will stop running. But

it is still in the Arduino's memory and that same program will start running again if you power up the

board again. It will stay in memory until you upload a different sketch. (Try it with Sketch 1.)

 Sketch 1 is a modification of the Blink.ino sketch. It includes code which uses the Serial

object to display output from a program in a serial port monitor window. This is how you keep track of

what your program is doing and, often, display intermediate values to help with code debugging. As will

be shown later, the serial port monitor window can also be used to provide input data to a sketch while it

is running. The Serial.begin(9600) method opens the port at a communication speed appropriate

for the Uno R3 board. See 2.2.5 Serial communication and displaying output for information about the

Serial object and its methods. See 2.3.1 Digital pins for information on digitalWrite().

 You can make changes at any time to a sketch, re-compile it to make sure you haven't introduced

any new errors, and then upload the new version. It is not necessary to save changes before you upload

them. Do not save your own sketches in the "read only" \examples folder. You can create a new sketch

http://arduino.cc/en/main/software
http://www.onsetcomp.com/products/data-loggers/ux120-series

5

there, but the IDE will not save a modification of that sketch in \examples. You can create another

folder for your sketches in the \Arduino folder, or you can just save them in the \Arduino folder.

Because the

Arduino system relies

on software and

hardware working

together, there are

many opportunities for

problems to arise. It is

far beyond the scope of

this document to try to

provide troubleshooting

advice. But, extensive

online support is

available for this

widely supported open

source system. I have

registered with online

forums for Arduino and

Adafruit customers.

(You have to register to

post questions.) I have

always gotten prompt

and useful advice from

these forums and other

online sources when I

encountered a problem.

The two most

common reasons why a

successfully compiled

sketch won't work are:

(1) the correct Arduino

board has not been

selected; (2) the wrong

COM port has been selected. These values are accessed through the Tools tab. The current board and

COM port values are shown in the lower right-hand corner of the IDE window. The COM port may be

different for different boards even of the same model. You may need to disconnect the USB cable and

plug it in again to get the IDE to select the appropriate COM port.

2.2 The Arduino Programming Language

 Arduino boards are deceptively small – the Uno R3 board is about the size of a credit

card – but they have many of the capabilities of a "real" computer. The maximum size of the allowed

code is smaller than allowed on a bigger computer, but within that constraint, the computational

Sketch 1. Turn an LED on and off.

6

possibilities are extensive. The major difference between microcontroller programming and

"conventional" programming (for scientific and engineering computation, for example) is that the

essential purpose of microcontroller programming is to control hardware. In this document, the hardware

of interest is restricted mostly just to those devices needed to construct a datalogger. This section will

mostly ignore hardware interfaces in favor of focusing on some programming fundamentals as they are

implemented with Arduino. A few language syntax elements are shown in Table 1. Many more syntax

elements are discussed in the following sections.

Arduino uses a C/C++-based

language. Its syntax and structure are

similar to other languages such as

JavaScript and PHP. Anyone with

experience programming in any of these

languages should have no difficulty with

Arduino programming logic, although

some hardware-specific language

components may be unfamiliar.

The Arduino language makes use

of the "object" concept. In programming,

objects are code constructions which

define “attributes” that describe

properties of the object and “methods”

which define procedures associated with

the object. For example, in Arduino

programming there is a Serial object

which includes methods for displaying

output on and reading output from the serial communications port (for example, Serial.print()

and Serial.read()), as will be described below.
1
 For almost all Arduino projects, you do not need to

know anything about how programming languages define and implement objects – it is enough to

understand how to use them in their proper context.

If you wish to make use of Arduino's capabilities there is no substitute for understanding its

language and writing your own code! If you have no previous programming experience, you can learn a

lot about programming in general and Arduino programming in particular by studying the examples in

this document and from a huge amount of code available online. You can find a language reference at

http://arduino.cc/en/Reference/HomePage and there is an Arduino programming "style guide" at

http://arduino.cc/en/Reference/StyleGuide.You can find an Arduino programming tutorial with many

examples at http://playground.arduino.cc/uploads/Main/arduino_notebook_v1-1.pdf. There are also

dozens (hundreds?) of books about Arduino programming.

2.2.1 The Minimum Sketch

Every Arduino sketch requires both a setup() and loop() function even if loop() doesn't

do anything.

1
 Newer computers, including modern laptops, don’t have an external serial port connector, but internally they will

support serial communications.

Table 1. Some language syntax.
Language syntax symbol or word

; Required to terminate code statement.

Multiple semicolon-terminated statements

can appear on the same line.

{…} Define a block of code.

// Define a one-line comment.

/*…*/ Define multi-line comments.

#define Give a name to a constant value to be used

throughout a sketch. No equal sign or

semicolon line terminator.
#define PI 3.14

#include Include external libraries. No semicolon line

terminator.
#include <RTClib.h>

const A keyword to mark defined variables as

"read only." The value of such variables

cannot be redefined later in the code. Usually

preferred over #define.
const float x=3.333;

…

x=0; // Not allowed!

http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/StyleGuide
http://playground.arduino.cc/uploads/Main/arduino_notebook_v1-1.pdf

7

If the loop() function is empty, there must be something in the setup() function or else the

sketch won’t do anything at all. Some of the examples in this section don’t do anything inside the

loop() function.

void setup() {

 // Put your setup code here, to run once.

}

void loop() {

 // Put your main code here, to run repeatedly.

}

2.2.2 Data type examples, type conversions, and operators

Table 2 shows the data

types supported by Arduino

programming: integers and real

numbers, characters, and Boolean

values. See the discussion of the

real time clock code, below, for

more information about using long

integer variables. Note the use of

scientific notation (with e or E) for expressing real numbers. In some cases, it is possible to convert

variables from one type to another. For example, it might be desirable to convert an integer value into its

corresponding floating point value, or an int to a long integer (but not from long to int!) A

char() conversion will convert an integer value to its corresponding ASCII character. Applying int()

to a character will return the ASCII value for that character. Boolean variables, true or false, are

represented by one-byte integer values equal to 1 or 0.

There is no built-in data type for strings (of characters) in Arduino programming. There are two

ways to construct strings. There is a String object which includes methods for creating and

manipulating strings. See http://arduino.cc/en/Reference/StringObject for more information. A simpler

but less flexible method is to define a string as an array of characters. See 2.2.7 Arrays for more

information about arrays. Creating a string as an array of characters requires less computing resources

than the String object, and should be used unless you actually need String object methods.

Sketch 2 shows some examples of data type conversions and strings. Note that strings constructed

as an array of characters do not have to be displayed one character at a time in a for… loop. (See Section

2.2.3 Conditional and repetitive execution.) Look up a table of ASCII characters to check the character-

to-integer and integer-to-character conversions done in Sketch 2: for example, the character c has a base-

10 ASCII value of 99.

Table 2. Data types and conversions.
Data type Example Type conversion

int int a, b=0, c; int(x)

long long e,f,g; long(x)

float float x, y=.333, z=17e-6; float(x)

char char c1='A'; char(x)

boolean (only two possible values, true or

false)
boolean pinHigh = false;

Table 3. Math operators.
Math operation Operator,

compound operator

assignment =

addition +, +=

subtraction -, -=

multiplication *, *=

division /, /=

http://arduino.cc/en/Reference/StringObject

8

Table 3 gives math operators along with their

compound versions. The assignment operator looks like the algebraic “equals” sign, but its interpretation

in programming is entirely different. It means, “Evaluate an expression on the right side of the assignment

operator and assign that value to the variable name on the left side of the assignment operator.” Hence,

int x=3; x=x+3;

makes no algebraic sense, because x cannot be equal to itself plus 3, but makes perfectly good sense in

programming. When these two statements are executed, x has a value of 6.

 Compound operators provide a shorthand method for certain arithmetic operations. For example,

int x=3; x+=3;

is completely equivalent to the previous two statements.

Sketch 2. Examples of data type conversions and strings.

 The result of a division operation depends on the nature of the numerator and denominator.

Hence,

int x=3,y=6; z=x/y;

gives a value of 0, but either

float x=3,y=6; z=x/y;

integer modulo %, %=

9

or

int x=3; float y=6; z=x/y;

gives a value of 0.5.

When you use numerical values in an expression for which you expect a real-number division

result, at least one of those values should include a decimal point in order for values to be treated as real

(floating point) numbers rather than integers. For example,

float z; z=2./3.;

rather than

float z; z=2/3; // The result is 0 even though z is declared as float.

or

float z; int x=2; z=x/3.;

rather than

float z; int x=2; z=x/3; // (the result is 0)

Unlike integer arithmetic, real-number math calculations are not necessarily exact. So, when determining

whether the results of two real-number calculations are identical, it is a better idea to compare the

absolute magnitude of their difference to some arbitrarily small value rather than testing them for

equality. (See if… constructs in 2.2.3 Conditional and repetitive execution, and Sketch 8.)

if (fabs(x – y)<10e-10) …; // then x and y are considered equal?

 The % operator returns the remainder from integer

division: 7%5 equals 2. There is no modulo operator for real

numbers, but see the fmod(x,y) math function in Sketch 8,

below.

There are also some bitwise operators, which are discussed

in the language reference linked above. There are comparison and

Boolean operators, as shown in Table 4.

There are many subtleties involved in using arithmetic,

comparison, and Boolean operators. If you are unfamiliar with

programming fundamentals, at some point you will have problems!

As just one example, remember that x==y; is NOT the same thing

as the assignment statement x=y;. The former statement tests for

equality and the latter assigns the current value of y to x. Confusing the equality operator with the

assignment operator is a common coding error that is very difficult to debug. Be careful!

Table 4. Comparison and

Boolean operators.
Operation Operator

Comparison operators

equal to ==

not equal to !=

less than <

greater than >

less than or equal to <=

Greater than or equal to >=

Boolean operators

AND &&

OR ||

NOT !

10

2.2.3 Conditional and repetitive execution

 The standard Arduino IDE installation includes several sketches that demonstrate some of the

language features in this section. Those examples tend to be more hardware-oriented. For example, the

IfStatementConditional.ino sketch uses a potentiometer attached to an analog pin.

if… constructs

 The if… construct allows blocks of code to be executed or not, depending on the value of a

Boolean expression (true or false). In compound if… statements, only the block of statements

corresponding to the first "true" condition (if such a condition exists) is executed. (Here and elsewhere in

this document, code or "pseudocode" enclosed in square brackets means that that code is optional.)

if (Boolean expression) {

 …

}

[else if (Boolean expression) {

 …

}]

[else (Boolean expression) {

 …

}]

11

For processing more than two

conditions, you can use as many

else if… statement blocks as you

need.

For Sketch 3, with x=175, the

message "x is OK." is displayed on

the serial port monitor. Then the rest

of the if… construct is ignored. That

is, even though it is also true that x is

less than 300, this portion of the

construct is never executed.

for… loops

 for… loop constructs are for

executing a block of statements a

specified number of times. These

loops are often used to access and

process elements of an array (see

2.2.7 Arrays, below). They can also

be used to control hardware

operations.

for (knt = lower or upper

limit; test knt against upper or lower limit; decrement or increment

operation on knt) {

…

}

Sketch 3. Example of if… construct.

12

Sketch 4. Some examples of for… loops.

The integer loop control variable knt (you can name it whatever you want) is assigned an initial

value. It is then incremented or decremented as specified and continues to be incremented or decremented

as long as its value meets the defined condition. Often, knt is incremented or decremented by 1 for each

pass through the loop, but other values are perfectly reasonable as long as the logic is correct and the

termination condition is defined properly – with improper increment/decrement and termination

conditions, it is possible to define a loop that will never terminate. The increment or decrement operation

is done (automatically) after the last statement inside the loop. When the loop is complete, knt has a

value equal to one increment or decrement step past the last value for which the loop statements were

executed. Sketch 4 should make this clear. It is also clear from this sketch that the loop counter variable

(named i in this example) can be re-used in more than one loop in the sketch. Finally, Sketch 4 shows

that it possible to nest loops. In this example, nested loops are used to calculate values in the rows and

columns of a two-dimensional table.

It is possible to use the break command (see 2.2.4 Some other program flow control statements)

to exit from a loop when some condition other than the specified loop terminating condition is met, but

this kind of “conditional” control is best implemented with the constructs discussed next.

while… and do… while loops

13

These conditional

execution constructs

allow a block of

statements to be

executed repetitively as

long as certain

conditions are met, as

opposed to for… loops,

in which the number of

executions is set ahead

of time. The statements

inside a while… loop

may not be executed at

all, depending on the

initial value of a Boolean

expression controlling

execution. do… while

loops are always

executed at least once

because the comparison

with the Boolean expression is done at the end of the loop rather than at the beginning. It is possible to

write loops that will never terminate, and it is a programmer’s responsibility to make sure this doesn't

happen.

In Sketch 5, the code waits for you to press a key and [Enter] in the serial port monitor. See 2.2.6

Math functions, below, for more information about using the random number generator. The output from

this sketch is always the same set of values between 1 and 100. These values are “random” in the sense

that they would pass statistical tests for randomness. Note that the loop terminates after seeing a value

≥50 because the test is done at the bottom of the loop.

switch construct

 The switch construct controls execution based on matching a value with a list of integer or

character values. (It won’t work with real numbers.) The case values in the list don’t have to be in any

particular order. This construct is often more clear than using a lengthy if… else if… statement.

However, unlike if… statements, which execute only the first true branch, each case in the switch

construct requires a break; statement to exit when the first match with int value or variable is

found; without a break; all the other remaining operations will also be executed. The default

keyword provides the opportunity for responding to not finding a match. Often, this response might be to

display a message explaining that no match was found.

switch (toMatch) {

Sketch 5. Conditional execution loops.

14

 case choice1:

 Do something when toMatch equals cboice1.

 break;

 case choice2:

 Do something when toMatch equals choice2.

 break;

 [additional cases…]

 [default:

 Do something if toMatch doesn't match any available choice.]

}

The switch construct cannot be used for

matching with real numbers. Use an if…

construct instead.

In Sketch 6, the message x=3 is displayed

in the serial port monitor. If the value of x is

changed to 4, the message x is out of

range will displayed.

Pre-compile directives for conditional execution

 Table 1 gave two examples of pre-compile

directives, #include and #define. These

directives can be used to alter what the Arduino

IDE “sees” when it compiles your sketch. For

example, the #include directive results in

having the specified .h file literally copied into

your sketch before it is compiled.

 The #if … #endif pre-compile

directive is used for including or excluding blocks

of statements before a sketch is compiled. In this

example, the pre-compile directive is used to turn

output to the serial port on or off:

#define ECHO_TO_SERIAL 1 //"true" (1) echoes data, "false" (0) doesn't

…

#if ECHO_TO_SERIAL

 Serial.println(… whatever you wish to display);

 …

#endif //ECHO_TO_SERIAL

You can call the test “variable” whatever you want. ECHO_TO_SERIAL was chosen because it describes

the purpose of using the directive.

Pre-compile directives are very useful language features when you are writing and debugging

code. You can “turn on” printing to the serial port while you are developing your code and then, just by

Sketch 6. Example of switch construct.

15

changing the value of ECHO_TO_SERIAL from 1 to 0, turn it off when everything is working correctly,

rather than having to remove or comment out all the code that is no longer needed. For a stand-alone data

logger, there is probably no reason to waste code writing results to the serial port in addition to writing

data to a file on an SD card. If you need to make changes and monitor the results, just change the value

back to 1 again.

Note that the same results could be obtained by setting a variable name to true or false and then

using if… statements to include or bypass code. But in that case, all the code is still included in the

compiled sketch and that could waste a lot of memory. With the #if… #endif directive, excluded code

is simply ignored when the sketch is compiled – a potentially important consideration given the Arduino's

relatively restricted memory for code.

2.2.4 Some other program flow control statements

break

continue

goto… label:

return [value]

The break statement is required for use in the switch construct described above. It is also used to exit

from loops, but some programmers deprecate this practice. Most programmers believe that goto

statements should never be used because they can result in code that is difficult to debug and maintain.

Nonetheless, both these statements have some legitimate uses if they are used sparingly and appropriately.

 The return statement is typically used to return a value from a user-defined function (see 2.2.8

User-defined functions), for example:

int checkSensor(){

 if (analogRead(0) > 400) {

 return 1;

 else{

 return 0;

 }

}

See below for more information about functions.

A return; statement can also be used to exit a function before some code is executed.

Sometimes this is more convenient than commenting out unwanted code with /*… */.

void myFunction(){

// good code here

return;

// code you want to be ignored

}

Sketch 7 shows some examples of using these statements.

16

Sketch 7. Some program flow control statements.

2.2.5 Serial communication and displaying output

 As is evident from the sketches shown so far, output from a sketch – text or numerical values –

can be displayed by sending the output to a serial port with Serial.print() and

Serial.println(). Here’s a summary of those and other methods.

Serial.begin(baud_rate)

 Opens a serial port.

Example:

Serial.begin(9600) //9600 is the baud rate for many applications.

Serial.peek() reads a byte in the serial buffer, but doesn’t move past that character. One use of this

method is to wait until a user presses a key in the serial port monitor window. (See Sketch 5.)

17

Serial.print(x[,n])

Serial.print(str)

 Displays value of x or a string in the serial port monitor. The optional parameter n specifies the

number of digits to the right of the decimal point to include in the display of a floating point number. The

default value, without specifying n, is two digits to the right of the decimal point.

Serial.println(x[,n])

Serial.println(str)

 Like Serial.print(), but appends an end-of-line mark to the output.

Example:

Serial.print("Here is some output: ");

Serial.println(3.333,6);

The serial port monitor will display: Here is some output: 3.333000. As is the case with other

high-level programming languages, the process whereby numerical values are translated into printable

characters is interesting, but almost certainly of no concern to users of the language.

Serial.read() reads and returns a byte in the serial buffer and moves to the next byte.

Serial.write(val)

[int bytesSent =] Serial.write(str)

The first method will write a single byte to the serial port. val could be an integer or a character that can

be represented in one byte, e.g., 57 or Z. The second method will write a string of characters to the serial

port. Optionally, you can read the number of bytes written to the port.

2.2.6 Math functions

 The Arduino microcontroller’s small size can be deceptive! The Arduino language supports many

math functions which make it possible to do sophisticated data processing in a datalogger sketch that

would otherwise have to be done offline in some other software application.

As noted previously, the Arduino language supports integers and real (floating point) numbers.

See the discussion of the real time clock code for more information about signed and unsigned integer

constants and variables. The Arduino language does not have a separate “double” floating point number

type for higher-precision calculations – all real numbers are treated as “double.”

The language reference home page, at http://arduino.cc/en/Reference/HomePage,

gives a short and incomplete list of "built-in" (if that's the right term) math functions. However, Arduino

includes support for the much more extensive set of functions found in the Math.h library

(http://www.nongnu.org/avr-libc/user-manual/group__avr__math.html) even though no Math.h library

folder is shown as part of the Arduino IDE installation. In Sketch 8, the “built-in” math functions display

in orange font, but other functions don't. For example, the “log” in log(x) is displayed in orange font,

but the “log10” in log10(x) isn’t. (Why? I don't know. All that matters is that both functions work.)

http://arduino.cc/en/Reference/HomePage
http://www.nongnu.org/avr-libc/user-manual/group__avr__math.html

18

Note that PI (uppercase) is a built-in defined constant. As is the case for C-based and many other

languages, the names of everything are case-sensitive, so pi is not the same as PI.

 See Sketch 5, above, for an example of using Arduino’s random number generator. The

random([min[,max]) function generates pseudo-random long integers, optionally between specified

minimum and maximum values. randomSeed(i), where i is an integer value, causes the random

number always to start at the same point in its sequence (depending on the value of i).

"Pseudo-random" numbers are not really “random.” They are generated by an algorithm based on

an initial value (a "seed") in a way that the resulting numbers should pass statistical tests for randomness.

See http://arduino.cc/en/Reference/RandomSeed for more information on these two functions, including

how to start the random number sequence at a different position every time the sketch runs.

All trigonometric functions accept as input and return as output angles in radians, not degrees:

radians = degrees × π/180 and vice versa to convert radians back to degrees. sin(30) will cause no

problems when you compile your sketch, but if you really want the sine of 30º, you must use

sin(30*PI/180.). It is up to the programmer to use all math functions appropriately – for example,

by not asking for the square root of a negative number. It is possible that some of these functions might be

computationally intensive enough to cause memory and/or performance problems with sketches. If so,

that would favor minimizing the numerical processing done within a datalogger program. The only way to

find problems is to try your code!

http://arduino.cc/en/Reference/RandomSeed

19

Sketch 8. Examples of Arduino math functions.

20

2.2.7 Arrays

 An array is a collection of values (elements) that can be accessed by name and an index number.

Index values always start at 0, not 1. The size of an array must be part of its declaration, either explicitly

or implicitly. That is, memory space for arrays is allocated statically, not dynamically. This means that

unlike with some languages, such as PHP, you cannot define additional array elements later in your code.

You must either declare the size without specifying values, or leave the size blank and declare values

enclosed in curly brackets (from which the code compiler will infer the size). Here are some examples of

array declarations:

int IntArray[10];

int counters[]={1,2,3,4,5};

float data[]={3.3,4.,-.5};

char greeting[4] = "hi!";

// length of hello[] will be 14 characters, including null

char hello[]="Hello, world.";

As noted above, the Arduino programming language does not have a separate "string" data type. Strings

defined as arrays of characters must contain one more element than the number of characters, to allow for

a required null character ('\0') at the end.

Elements of an array are accessed through an index value, which can be an integer constant, an

integer variable, or a calculation that returns an integer result. The Arduino language does not check to

see if an index value refers to non-existent elements beyond the array declaration boundaries. Trying to

access values outside the defined boundaries will cause problems that can be very difficult to debug.

Often, for… loops are used to access array elements. For an array with 10 elements, the appropriate

index values are 0 through 9, not 1 through 10. Reading from element 10 in a 10-element array will not

produce an error, but it will produce junk – whatever happens to be in that memory location at the time.

Trying to assign a value to element 10 in a 10-element array could destroy values in memory that you

really didn't want to lose!

 Sketch 9 shows a typical calculation performed on an array of numerical values: find the mean

and standard deviation of values in the array. This code will be of interest in a datalogger sketch.

2.2.8 User-defined functions

 User-defined functions serve two important purposes. They make it easier to organize code and

they facilitate calculations that must be done more than once, but with different input values. The two

important points to know about functions is that: (1) variables defined within a function (local variables)

are isolated from variables in your main code or in other functions; (2) functions can have multiple inputs,

but they can return only one value.

 Sketch 10 shows a computationally trivially simple example: Write a function which accepts the

radius of a circle as input and returns the circumference as output. If the function returns a value, the data

type must be included in the function definition. If it doesn’t return a value, its function type should be

void. For this example, the return value is a floating point number. The data type(s) of the input

parameter(s) must be specified, as shown.

21

Sketch 9. Using arrays.

 There are many situations in which it would be desirable to return more than one value from a

function. For example, suppose you wish the function in Sketch 10, perhaps renamed to CircleStuff,

to return both the circumference and area of a circle. Arduino functions (like C functions, on which the

Arduino programming language is based) cannot return multiple values directly. One way around this

problem is to store multiple values in an array and to define that array as a global variable. This is done

simply by declaring the array before any other code in the sketch. A globally declared variable should not

be re-declared within a function. With no direct return value, the function type should be void. When

you write the code, it is up to you to keep track of which values are held in which array element. A

possibly significant restriction is that all the return values must be of the same data type because all the

array elements must be of the same data type.

22

Sketch 10. Example of a user-defined function.

Sketch 11a is a rewrite of Sketch 9, with some statistics calculations done in a user-defined

function. Because there are four calculated values (mean, standard deviation, maximum, and minimum –

all floating point numbers), the results are returned in an array.

 With this approach, it is easy to add more return values to a function. For example, in Sketch 11,

you could define the global array A with 5 elements instead of 4 and calculate the median in the function.

 It is not necessary to use an array to access multiple values calculated within a function. You can

define all the desired return values as global variables, which are available inside any function. There are

two advantages to this approach: (1) each value has its own variable name rather than being just an

indexed array element; (2) the values don't have to have the same data types. The only disadvantage is

that you have to be careful not to redefine those variable names elsewhere in your sketch. This might be a

significant problem in an environment with less restrictive maximum code size requirements, but it

shouldn’t be a problem for the code that the Arduino can handle.

 There is a third option for “returning” multiple values from a function. This involves passing a

“pointer” to a variable name and modifying the contents of the memory location to which that pointer

points. In that case, the function doesn’t actually “return” anything, so its type is void. Sketch 12 shows

an example. Because using too many global variables can create problems with possible variable name

conflicts, many programmers prefer to use pointers rather than global variables. Note that arrays are

always passed by reference. Hence, you can pass them as input to a function and modify their elements in

a function without having to “return” them, thereby avoiding the use of a global variable for the array. See

Sketch 11b.

23

Sketches 11a and 11b. Returning multiple values from a user-defined function using arrays.

24

Sketch 12. Using pointers to “return” multiple values from a user-defined function.

 It is never required to use pointers in Arduino programming, but it is sometimes very helpful for

getting around the single-return restriction of user-defined functions, as Sketch 12 shows. In some

situations it can be a more efficient way to change values. Arduino programming syntax for referencing

and dereferencing pointers, using & and * in front of variable names, respectively, is identical to the C

language. Oddly, the Arduino programming reference (http://arduino.cc/en/Reference/Pointer) is

singularly unhelpful on this topic – it basically advises you to look elsewhere. Fortunately, there are many

online discussions of how to use pointers in C programming.

2.3 Digital and Analog I/O

As noted previously, a fundamental purpose of programming the Arduino is to control the

hardware interface. This is done through pins attached (both literally and in the software sense) to various

http://arduino.cc/en/Reference/Pointer

25

devices. In this document, we will just scratch the surface of this topic. Just as there is no substitute for

writing your own code to learn how to program, there is no substitute for wiring up devices to the

Arduino board. Get some prototyping breadboards, a few electronics components, some hookup wire, and

get started. All these parts are widely available from places like RadioShack, AllElectronics

(www.allelectronics.com), and other electronics suppliers. Or, buy the Arduino starter pack mentioned in

Chapter 1.Time spent with these simple devices absolutely will not be wasted in preparation for putting

together a datalogger.

2.3.1 Digital pins

Digital pins can be set to either a “high” or

“low” state. See here for a tutorial on digital pins:

http://arduino.cc/en/Tutorial/DigitalPins.

There are three functions available for

controlling and accessing digital pins:

pinMode(pin_number, INPUT or

OUTPUT)

digitalWrite(pin_number, HIGH or

LOW)

digitalRead(pin_number)

Pins configured as OUTPUT (the default state) can provide a constant current of up to 20 mA or an

intermittend current of up to 40 mA to a connected device – enough to power an LED, for example, but

probably not a relay or motor. Pins configured as INPUT are used to detect changes in state of a

connected devices such as a pushbutton.

Sketches 13

and 14 show two

examples, slight

modifications of

examples from the

standard Arduino

installation library.

The Uno R3 has an

LED already

connected to pin 13.

Sketch 13 turns an

LED (the small yellow

LED marked with the

red circle in the image)

on and off, with one

second in each state.

This example uses

only the hardware

already on the board.

Figure 2. Use a digital pin to read the status of a
pushbutton.

Sketch 13. Blink an LED.

http://www.allelectronics.com/
http://arduino.cc/en/Tutorial/DigitalPins

26

Sketch 14 uses

the hardware shown in

Figure 2 – a pushbutton

connected to a digital pin,

through a 10KΩ resistor

to ground. The purpose of

the resistor is to limit the

amount of current that

will flow from the pin to

ground when the button is

pushed; this current

should not exceed 40 mA.

From Ohm's law, the

current through the 10KΩ

resistor is I = V/R =

5/10000 = 0.5 mA. Do

NOT connect a

pushbutton directly from

the pin to ground! The

digital pins are at the top

right. The blue wire is

connected to pin 2. The

red and black wires are

connected to the +5V pin and ground. In the code below, the digitalRead() function reads the state

of pin 2, HIGH (when the button is pressed) or LOW. For software help, see these tutorials:

http://arduino.cc/en/Reference/digitalRead and http://arduino.cc/en/Reference/digitalWrite. If

everything is working OK, the small yellow LED marked with the red circle will light up

only while the button is pushed and held down.

2.3.2 Analog pins

 Reading signals on analog input pins is no more difficult than reading digital pins, except the

return is an integer value whose interpretation is based on the input voltage relative to the reference

voltage applied to the pin. (See http://arduino.cc/en/Reference/AnalogReference?from=Reference.AREF)

and http://arduino.cc/en/Tutorial/AnalogInputPins.) The functions available for controlling and accessing

analog pins include:

analogReference(type)

 Determines the reference voltage for analog input – the value used as the top of the input range.

The allowed type values include:

DEFAULT, 5V for 5V boards or 3.3V for 3.3V boards

INTERNAL, a built-in reference of 1.1 V

EXTERNAL, a voltage applied to the AREF pin, between 0 and 3.3V or 5V,

 depending on the board.

Sketch 14. Use LED to display state of a pushbutton.

http://arduino.cc/en/Reference/digitalRead
http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/Reference/AnalogReference?from=Reference.AREF
http://arduino.cc/en/Tutorial/AnalogInputPins

27

Additional TYPE values are not available on the Arduino R3 or equivalent boards. The reference voltage

for all analog pins is set with analogReference()– you cannot set different values simultaneously

for different pins, although you can write code to change the reference while a sketch is running.

analogRead(pin_number)

 Reads a value from the specified pin. For the Arduino's 10-bit analog-to-digital conversion, this is

an integer value A between 0 and 1023 and the conversion to voltage is (A/1023.)*REF;, where

REF is the default reference voltage (5V or 3.3V, depending on the board) or the reference voltage set

with analogReference(). The decimal point after 1023 is required because A is an integer value

and (A/1023)*REF; will return a value of 0, or 1 if A is 1023.

analogWrite(pin_number,dutyCycle)

The analogWrite()

function is not, as might be a

reasonable assumption, the "inverse"

of analogRead(). Its purpose is to

modify the duty cycle of a pulse-

width modulated (PWM) square wave

(see Figure 3) sent to a pin configured

to accept this input. The frequency of

the square wave is about 500 Hz. The

allowed values for dutyCycle are

between 0 and 255. For a 50% duty

cycle, set dutyCycle=128. For a

5% cycle, set dutyCycle=13.

On the Arduino Uno R3 and

similar boards, this function works on

pins 3, 5, 6, 9, 10, and 11. On the Uno

R3 these pins are marked with a dash

before the pin number. On the

Arduino Pro, the pins are noted with

PWM before the pin number.

Sketch 15, shows how to use analogRead(). The two outer leads of a 10kΩ potentiometer are

connected to the 5V pin and ground. The center lead is connected to an analog pin. The code reads the

integer value on the pin and blinks the LED on digital pin 13 at a rate that depends on the position of the

potentiometer shaft (with delay(sensorValue) having a value between 0 and 1023 milliseconds).

Sketch 15 also displays the voltage value – sensorValue/1023.*5. – at the analog pin, as shown in

some output cut-and-pasted from the serial port window. As noted above, the decimal point after the 1023

is required. The decimal point after the 5 is optional in this case.

 For the Uno R3 board, which operates at 5V, it is essential not to apply a voltage outside the

range 0–5 V to any pin, digital or analog. Exceeding this range will destroy that pin's function and may

destroy the entire Uno board. In Sketch 15, the voltage applied to the input pin is, by definition, some

fraction of the 5 V applied to the digital pin, so an appropriate value is guaranteed. This is a potential

Figure 3. Pulse width modulation. (See
https://learn.adafruit.com/downloads/pdf/adafruit-arduino-

lesson-3-rgb-leds.pdf)

https://learn.adafruit.com/downloads/pdf/adafruit-arduino-lesson-3-rgb-leds.pdf
https://learn.adafruit.com/downloads/pdf/adafruit-arduino-lesson-3-rgb-leds.pdf

28

problem with an external sensor providing input to an analog pin. Some Arduino boards are powered at

3.3 V, in which case that is the maximum allowed input voltage on a pin. The ”input voltage” on a pin is

different from the supply voltage which powers the board; that should be in the 7-12V range. (The board

contains an onboard voltage regulator to provide +5 V to the board components when an external power

supply is used.)

sensorValue: 0
 analog voltage: 0.000

sensorValue: 0

 analog voltage: 0.000

sensorValue: 27

 analog voltage: 0.132

sensorValue: 175

 analog voltage: 0.855

sensorValue: 451

 analog voltage: 2.204

sensorValue: 805

 analog voltage: 3.935

sensorValue: 1023

 analog voltage: 5.000

sensorValue: 1023

 analog voltage: 5.000

Sketch 15. Reading voltages on an analog pin.

 Sketch 16 shows how to use analogWrite(). This sketch has absolutely nothing to do with

data logging, but it does show an interesting use of the PWM pins – varying the effective voltage to the

three LEDs in a three-component (RGB) LED. It uses three 1K current-limiting resistors and a common-

anode LED (Adafruit PID 159) in a diffusing 5-mm . By varying the width of the voltage pulse supplied

to each LED, the visible output can be dimmed or turned off to select and blend colors quite smoothly –

the pulse frequency is high enough that the LED output doesn't appear to flicker. The image shows the

LED in its “aqua” mode. In a simpler application, analogWrite() could be used to control the

brightness of any LED – otherwise, this would have to be done by changing the resistor value.

Note: never connect an LED to a pin without including a current-limiting resistor. For a typical

LED, this value shouldn’t be less than about 270Ω (a standard resistor value). For typical LEDs in 3- and

5-mm housings, the current through the LED and resistor should be about 20 mA and no more than 30

mA for full brightness. In many cases, a smaller current will still provide adequate light and may be

desirable to minimize power consumption.

29

Sketch 16. Using analogWrite() on PWM pins to change the apparent color of an RGB

LED.

30

3. AN ARDUINO-BASED DATALOGGER

With the programming background presented in Chapter 2, it is now possible to develop datalogger

applications. For our purposes, a "datalogger" is defined as a device which will operate independently to

store analog data in digital form. The datalogger application may also include programming to do some

internal data processing of input, such as averaging multiple values collected over a specified time

interval. To operate independently, the device should include onboard data storage. Microcontrollers

make it possible to design such standalone devices. In general, such a project requires four components:

1. microcontroller

2. analog-to-digital (ADC) converter

3. clock

4. data storage device (an SD card)

3.1 Using the Adafruit Datalogger Shield to Explore a Datalogger Application

 The hardware required for a basic standalone datalogger includes an Arduino board and a

datalogger shield from Adafruit (https://www.adafruit.com/product/1141). (Boards which "piggyback" on

the Arduino board are called "shields.") The shield includes a real time clock and an SD card interface. A

datalogger shield packaged with components for sensing light (CdS photoresistor) and temperature

(Analog Devices TMP36, see https://learn.adafruit.com/tmp36-temperature-sensor) is used here, see

http://www.adafruit.com/products/249. This is an instructive choice of hardware. The photoresistor

requires that current flow through it, supplied by the Arduino board. The temperature sensor requires

power supplied by the Arduino.

The datalogger shield without any input sensors is preassembled. Connecting the light and

temperature sensors requires a little soldering, as shown in Figure 4, but there are instructions in a

complete user's guide (https://learn.adafruit.com/downloads/pdf/adafruit-data-logger-shield.pdf).

As shown in Figure 4, the outputs from these two sensors are connected to analog pins A0 and

A1(the two blue wires in the lower right hand corner in Figure 4(b) – the shorter wire passes just over the

Figure 4(a). Connections for

temperature and light sensors.

Figure 4(b). Components installed in the work area of an Adafruit

datalogger shield, mounted on Uno R3 board.

https://www.adafruit.com/product/1141
https://learn.adafruit.com/tmp36-temperature-sensor
http://www.adafruit.com/products/249
https://learn.adafruit.com/downloads/pdf/adafruit-data-logger-shield.pdf

31

left-hand side of the green LED). They make use of the built-in 10-bit analog-to-digital conversion

capabilities of the Arduino board to read the output. These sensors are very useful for learning how to

program a datalogger, but the relatively low 10-bit ADC conversion resolution on the Arduino analog

input over a 0-5V (default) input range – 5/1023≈ 5 mV – will not be suitable for sensors with lower

voltage outputs; For example, the output from a silicon photodiode-based pyranometer,

(http://www.instesre.org/construction/pyranometer/pyranometer.htm), available from the Institute for

Earth Science Research and Education has an output of about 250mV in full summer sunlight. Under full

summer sun, the solar radiation reaching Earth's surface is about 1000 W/m
2
, so for this instrument, the

logger will provide a resolution of only about 20 W/m
2
 – a resolution too poor for monitoring solar

radiation. The datalogger shield software uses a 3.3V power source from the Arduino Uno R3 board. This

improves the resolution a little, but not significantly.

Let's test two subsystems on the datalogger shield – the clock and the SD card interface.

3.1.1 Real time clock (RTC)

 The datalogger shield includes a real-time clock – an essential component of a system for logging

data. The coin cell battery will last for several years, so it is simply left in place once installed. A library

is required to use the clock. Download the RTClib.cpp and RTClib.h files at

https://github.com/adafruit/RTClib. Create a folder within the \libraries folder,

\libraries\RTClib, and copy both the .cpp and .h files there. You should install libraries only

when the Arduino IDE is not running because libraries installed while the IDE is running will not be

recognized until the IDE is closed and restarted.

 Communications with the clock are handled through the widely used "Inter-Integrated Circuit"

(I2C) protocol, which allows various devices to communicate with each other

(http://tronixstuff.com/2010/10/20/tutorial-arduino-and-the-i2c-bus/). That communication is managed by

the Wire.h library, which is part of the standard Arduino installation.

Sketch 17 shows how to use the

real time clock and its library. The

rtc.now() method provides access to

year, month, day, hours, minutes, and

seconds. Some output from that sketch is

shown in Figure 5. The first time you run

Sketch 17 with a new clock, the output

will not agree with your computer clock.

Remove the line comment (//) from line

10 and reload the script. This will set the

clock according to your computer clock.

After this has been done once, you

shouldn't have to do it again (for years!)

as long as you don't remove the battery. In the sample code from Adafruit, the

Serial.begin(57600) statement must be changed to Serial.begin(9600). The sampling

interval is every 3 seconds (3000 milliseconds) – see delay(3000) at the end of the loop.

Figure 5. Output from Sketch 17.

http://www.instesre.org/construction/pyranometer/pyranometer.htm
https://github.com/adafruit/RTClib
http://tronixstuff.com/2010/10/20/tutorial-arduino-and-the-i2c-bus/

32

Time calculations are

based on the number of

seconds since the beginning of

the day on 1/1/1970 (not

counting any leap seconds that

may have been added). This

may seem like an odd way to

keep track of time but, because

integer calculations can be

done exactly and very

efficiently, this is typical of

how programming languages

handle time calculations. One

result is that integers can

become too large for the

standard 2-byte int data type

(±32787 or 65,535 for an

unsigned integer). Note

statements such as

Serial.print(now.unix

time()/86400L);, in

which the "L" forces the

86400 (the number of seconds

in one day) to be treated as a

"long integer" stored in 4

bytes. It could also be specified

as an unsigned long integer

(UL or ul) (See

http://arduino.cc/en/Reference/

IntegerConstants for more

information about typing

integers.) For specifying long

integers, lowercase L will

work, but it is a good idea to

use uppercase L rather than

lowercase l, which can too

easily be mistaken for the digit 1. An unsigned long integer can store a value up to 4,294,967,295.

3.1.2 SD card interface

Like the clock, the SD card requires a library. Download the SD.h and SD.cpp files at

https://github.com/adafruit/SD and copy them into a \libraries\SD folder. Sketch 18, which tests

communication with an SD card, is taken from the SD library. Figure 6 shows output from the

CardInfo.ino sketch available along with the SD library. The code line const int chipSelect

= 4; in the downloaded version must be changed to const int chipSelect = 10; to work with

Sketch 17. Testing the real time clock.

http://arduino.cc/en/Reference/IntegerConstants
http://arduino.cc/en/Reference/IntegerConstants
https://github.com/adafruit/SD

33

this shield. In this case,

the code reports that 6

files (including an empty

file) have already been

saved to the card. The

file creation data and

time are clearly junk.

This is because a

different library, SdFat

(http://code.google.co

m/p/sdfatlib/downloa

ds/list), is required to

provide proper time

stamps for files written

to SD cards. For these

purposes, this

capability does not

seem to be worth the

extra code; typically, logged data should include date and time fields from the real time

clock as part of the output saved in the file.

A reasonable next step is to write date and time data from the real time clock code to an SD card

file. First, recall the real time clock code shown previously in Sketch 17. That code read time and date

values from the DateTime object, did a couple of calculations, printed results to the serial port, and then

waited for 3 seconds (delay(3000)) before doing it again.

Sketch 17 does not really produce results every three seconds. The delay between getting one set

of time and date values and the next is three seconds, because of delay(3000), plus the time required

to do everything else inside the loop. In some applications, the additional delay of at least several tens of

milliseconds might not even be noticeable, but as a result the output from Sketch 17 will periodically

"skip" a second.

The way to fix this problem (assuming that you think it is a problem) is to get data from the

DateTime object more often and process data only when the seconds returned from DateTime is an

integer multiple of the desired interval. If t is seconds and dt is the desired sampling interval, then data

should be processed only when t%dt is 0. Getting data from the DateTime object more often may put

more demands on the processor, but you will have more control over the results. If dt is at least 2 s, then

your code should include a delay(1000) to ensure that the same second isn't processed twice. Then

your logged data will always be at the desired interval relative to clock time. If this doesn't matter, don't

bother!

 In Sketch 18, the 6
th
 line, File logfile;, defines a logical name, a "handle," which is then

associated with a physical file name. You can use whatever name you like for the handle. The logical

name is not the same as the physical file name.

Figure 6. Output from CardInfo.ino (modified).

http://code.google.com/p/sdfatlib/downloads/list
http://code.google.com/p/sdfatlib/downloads/list
http://code.google.com/p/sdfatlib/downloads/list

34

Sketch 18. Write date and time data to SD card file at specified time interval.

Sketch 18 includes a pre-compile directive to turn off writing to a file, for the purpose of testing

the rest of the code. All the code for writing data to a file is included between within the #if… #endif

directives. The syntax for logfile.print() and logfile.println() is the same as for

Serial.print() and Serial.println(). However, logfile.print() and

logfile.println() don't actually write data to the file. Those statements temporarily store data in a

35

buffer. The logfile.flush() statement actually writes data to the file – you can think of it as

"flushing" the buffer by transferring data to the SD card file. In principle, this means that you can store

the results of multiple calls to print() or println() before actually writing those results to a file.

This may save processing time and memory space, but it doesn't seem worth the effort for the kinds of

data logging applications that will be dealt with in this document.

For Arduino programming, file names are restricted to no more than 8 characters, a period, and a

maximum of three characters for a file name extension. In Sketch 18, the data are written with a .csv

file extension so they are easy to import directly into a spreadsheet. Windows computers don't distinguish

between uppercase and lowercase characters in file names (saved files will be spelled in all uppercase

letters), but Linux systems do, so be sure to make your spelling of file names consistent as required.

For writing date and time data to a file, my personal preference is to separate year, month, day,

hour, minute, and second by commas, rather than writing them in a conventional MM/DD/YYYY

HH:MM:SS format (or DD/MM/YYYY… in European notation). This makes it easy to convert a day and

time into a fractional day. This calculation could be done in your sketch:

fractionalDay = day + hour/24. + minute/1440. + second/86400.;

where the decimal points force the calculation to use a real-number arithmetic – otherwise calculations

with integer division (for example, hour/24) would always be 0.

 Sketch 18 represents the last intermediate step toward writing code to log temperature and light

sensor data. Yes, a pre-written logging script for those data is included with the Adafruit datalogger

shield/sensor package, but it has proven much more instructive to approach this application one step at a

time by learning how to write code that does just what is needed to test each component of the system,

and nothing more.

3.1.3 A simple data logging program

This section uses the Arduino data logging shield with temperature and light sensors, connected

as shown above in Figure 4. Sketch 19 is a simple data logging program for these sensors. (These

sketches, and some that follow, are too long to capture as screen shots of the IDE window.) It records

temperature (ºC) and light sensor data (integer values between 0 and 1023) every 5 seconds. Using pre-

compile directives, the output can be switched between the serial port (set ECHO_TO_SERIAL to 1 for

testing, as shown in the sketch) and to an SD card file (ECHO_TO_FILE to 1), or both outputs can be

turned. You can name these directives whatever you like – these just seemed like reasonable names. Some

serial port output is shown in Figure 7(a) and some data from an output file opened in Excel is shown in

Figure 7(b).

Sketch 19.

// MyLightTempLogger.ino

#include <SPI.h>

#include <SD.h>

#include <Wire.h>

#include <RTClib.h>

#define ECHO_TO_FILE 0

#define ECHO_TO_SERIAL 1

File logfile; // the logging file

int Second,delay_t=1000,dt=5;

36

int tempReading, photocellReading,Year,Month,Day,Hour,Minute;

float temperatureC;

const float aref_voltage=3.3;

const int photocellPin=0,tempPin=1,chipSelect=10;

RTC_DS1307 RTC; // Define real time clock object.

void setup() {

 Serial.begin(9600); pinMode(10,OUTPUT);

 #if ECHO_TO_SERIAL

 Serial.println("Write to serial port.");

 Serial.println("year,month,day,hour,minute,second,day_frac,light,T_C");

 #endif // ECHO_TO_SERIAL

 #if ECHO_TO_FILE

 Serial.print("Initializing SD card...");

 if (!SD.begin(chipSelect)) {

 Serial.println("Card failed, or not present"); return; }

 else {

 Serial.println("card initialized."); }

 char filename[]="TEMPLITE.CSV";

 logfile=SD.open(filename,FILE_WRITE);

 if (!logfile) {Serial.println("Could not create file."); return; }

 else {Serial.print("Logging to: "); Serial.println(filename); }

 logfile.println("year,month,day,hour,minute,second,day_frac,light,T_C");

 #endif // ECHO_TO_FILE

 Wire.begin(); RTC.begin();

 analogReference(EXTERNAL);

}

void loop() {

 DateTime now=RTC.now();

 Year=now.year(); Month=now.month(); Day=now.day();

 Hour=now.hour(); Minute=now.minute(); Second=now.second();

 if ((Second%dt)==0) {

 photocellReading=analogRead(photocellPin); delay(10);

 tempReading=analogRead(tempPin); delay(10);

 temperatureC = (tempReading*aref_voltage/1024 - 0.5)*100;

 #if ECHO_TO_SERIAL

 Serial.print(Year); Serial.print('/'); Serial.print(Month);

 Serial.print('/'); Serial.print(Day); Serial.print(' ');

 Serial.print(Hour); Serial.print(':'); Serial.print(Minute);

 Serial.print(':'); Serial.print(Second);

 Serial.print(' ');

 Serial.print(Day+Hour/24.+Minute/1440.+Second/86400.,5);

 Serial.print(' '); Serial.print(photocellReading);

 Serial.print(' '); Serial.print(temperatureC,2);

 Serial.println();

 #endif // ECHO_TO_SERIAL

 #if ECHO_TO_FILE

 logfile.print(Year); logfile.print(',');

 logfile.print(Month); logfile.print(',');

 logfile.print(Day); logfile.print(',');

 logfile.print(Hour); logfile.print(',');

 logfile.print(Minute); logfile.print(',');

 logfile.print(Second); logfile.print(',');

 logfile.print(Day+Hour/24.+Minute/1440.+Second/86400.,5);

 logfile.print(','); logfile.print(photocellReading);

 logfile.print(','); logfile.print(temperatureC,2);

 logfile.println();

37

 logfile.flush(); // write to file

 #endif // ECHO_TO_FILE

 } delay(delay_t);

}

Figure 7(a). Serial port output for MyLightTemperatureLogger.ino,

with ECHO_TO_FILE and ECHO_TO_SERIAL both set to 1.

Figure 7(b). SD card file (TEMPLITE.CSV) output for

MyLightTemperatureLogger.ino.

3.1.4 Additional software considerations for a data logging application

 For a general-purpose data logging application, it is useful to be able to modify its performance

with "configuration parameters." The simplest implementation samples and stores data at a specified

interval; Sketch 19 is an example of such an implementation. A more flexible implementation would

allow changing the sampling interval without having to make changes to the code. It might also be

desirable to sample data at some specified interval and then, at some longer interval, calculate and store

statistics for the individual samples. For example, sample at 10-second intervals and then, at 5-minute

intervals, calculate and store average, max, min, and standard deviation for those 30 samples.

38

There are two possibilities for providing additional flexibility. One is to create a configuration file

"offline" and store it as a text file on the same SD card used to store data. Another way is to upload the

sketch and enter the configuration data from the keyboard in the serial port monitor window. Both

methods require some knowledge about how Arduino reads and processes numerical and text input.

Sketch 20 shows one way to read data from a file on the SD card. A lot of the code is required

just to check the status of the hardware. The rest of the code deals with interpreting data stored in the file.

When a data file is opened (the default for an open file is "read only"), the code establishes a "pointer" to

the beginning of the file. The read() method reads the byte at that position and advances the pointer to

the next byte.

This is not helpful behavior for interpreting several bytes in a file as numbers or "words" – strings

of characters. It is important to understand that if you write 3.14159 in a text file, it looks to you like the

number 3.14159. But from a computer's point of view, this is just a string of bytes that happens to

represent digits and a decimal point.

The Arduino programming language includes two methods to deal with extracting numbers from

strings of bytes: parseInt() and parseFloat().These functions start at the current location of the

file pointer. They then look for the first byte that could be a character associated with a number – the

digits 0-9, a period (decimal point, for a floating point number), a + or – character, or e or E for a floating

point number expressed in scientific notation. That byte is the first character in a string. Then they keep

looking at byes, adding them to the string one at a time, until they find a byte that represents a character

that can't be part of a number. Finally, they convert that string of characters into an integer or floating

point number; how they do this last step might be interesting, but it is not relevant to this discussion.

One of the values in the data file accessed by Sketch 20 is the name of an output file to which

data will be written. If this text string represents a file name, it should contain no more than eight

characters for the name, a period, and no more than three characters for the file name extension. But, the

text could be used for anything, with no length limitation. The Arduino programming language includes a

String object that makes it easy to construct a "word" from a string of bytes in a file. In this case, the

read() method is used to skip past the comma after the last numerical value. Then characters are

extracted one at a time using the read() method and they are "concatenated" to a variable to store the

word – in this case, the output file name. See the statement outFile += c; . The while… loop to

read characters terminates when there are no more characters in the file. The delay(10) command may

or may not be necessary. (But, see Sketch 20.) Finally, the trim() method is used to strip "white space"

characters (spaces and tabs) that might exist at the end of the line of characters in the data file, or even at

the beginning if there is a space between a comma and a string of characters. The output shows the

extracted values. Note that the 3.3 is printed as 3.300 – three digits to the right of the decimal point – to

demonstrate that the code really has interpreted the characters 3.3 as the floating point number 3.3.

The second approach to getting configuration parameters reads data directly from the serial port

monitor rather than from a file. The code in Sketch 21 is shorter than that required to read from a data file

on an SD card because there is less checking for hardware status.

Some Arduino programmers advise against using the String method unless it is absolutely

necessary because it is a memory hog. It also allows dynamic allocation of array space in memory

because the length of a character string doesn’t have to be specified in advance. This can cause problems

with code and memory space. Sketch 21 uses the same parseInt() and parseFloat() methods to

extract numerical values as Sketch 20, but it doesn't use String methods to extract the text. The only

39

disadvantage of this approach is that the number of characters in the file name string must be known

ahead of time. If the character array dimension for the file name in your code is 13 – 8 characters for the

file name plus a period, a three-character extension, and a null character, the file name string you enter

must be in the format XXXXXXXX.XXX. Note that the output doesn't display the length of the text string.

This is because length() is a method of the String object, which isn't available here.

Initially the serial port buffer is empty. The code

while (Serial.peek()<0) {

}

waits until the user types something into the box at the top of the serial port monitor window and presses

the [Enter] key. If the user types 3,9600,3.3,LOGGER10.CSV[Enter], the code extracts these four

values – two integers, a floating point number, and a string. If you make a mistake, press the reset button

on your Arduino board and start over again.

It is interesting to note that the delay(10); statements in line 15 and 17 turn out to be required

for this sketch to work. This 10-ms delay is apparently necessary to "slow down" the code long enough to

process data coming from the serial port buffer – an important and hard-earned lesson about a problem

which took a lot of trial-and-error debugging to find and fix!

 Both Sketch 20 and 21 assume a specific format for the characters saved in a text file or typed

into the serial port buffer. In both cases, the format is integer, integer, floating point number, string –

separated by commas. A space before the numerical values is OK, but not between the last comma and

the start of the text in Sketch 21; without the String object, there is no trim() method to strip off

white space. If the format is changed from what is shown, then the code must be changed accordingly.

The code is not "smart enough" to figure out what you mean if you enter something unexpected!

 Note that the code to read configuration values from the serial port (Sketch 21) is 5150 bytes,

while the code in Sketch 20, with the String and SD libraries, takes almost 18,000 bytes of the 32,256

bytes available for code. On a "real" computer, this wouldn't be an issue, but sketch size can definitely be

an issue for microcontroller programming.

40

Sketch 20. Read values from a text file stored on SD card.

41

Sketch 21. Read values from serial port.

3.1.5 Putting it all together with complete data logging applications

 In this section, two sketches will be presented which use the data logging shield with temperature

and light sensors. Both sketches require that configuration information be supplied as input in the serial

port window. (Based on the discussion in 3.1.3, this seems like the easiest way to get configuration

parameters.) Both sketches include pre-compile directives, ECHO_TO_FILE and ECHO_TO_SERIAL,

that direct output to an SD card or to the serial port. In either case, there is some output to the serial port

that displays the selected configuration parameters before reading values. The pre-compile directive

values must be set manually (with 1 for "on" or 0 for "off") before the sketch is uploaded.

Sketch 22 logs values at prescribed intervals, expressed in seconds or minutes – typing

5,m,logfile1.csv

in the serial port window records values every 5 minutes and writes them in logfile1.csv, assuming

that the ECHO_TO_FILE directive is set to 1; if it is set to 0 and ECHO_TO_SERIAL is set to 1, then the

values are displayed in the serial port window and the file name is ignored.

42

The data collection always starts at a time that is an even multiple of the sampling interval. That

is, for 2-second sampling, the samples are recorded at 0, 2, 4,… seconds, but not at 1, 3, 5,… seconds. For

the example shown in Figure 8, the sampling started at 40 seconds, but it wouldn't have started at 39

seconds. For this code, the shortest sampling interval is 2 seconds and the longest is one hour. For one-

hour sampling enter

0,m,…

because the minutes value returned by the clock is 0 at the start of each hour.

Some output from 2-

second sampling written to the

serial port is shown in Figure

9, with some data sampled in

my office at 2-minute

intervals, written to a .csv

file, and opened in Excel. The

temperature graph is a good

illustration of the limitations of

the Arduino's built-in 10-bit

A/D resolution – the

temperature resolution is about

0.3ºC. Although this may seem

coarse, typical accuracy for the TMP36 sensor is only ±1ºC around room temperature and ±2ºC over its -

40ºC to +125ºC range

(http://www.analog.com/en/mems-

sensors/digital-temperature-

sensors/tmp36/products/product.ht

ml). The appropriateness of

analog-to-digital conversions must,

as always, be judged based on the

inherent accuracy of the

measurement providing the analog

signal.

The light intensity is in

arbitrary units. The logger was

placed on my indoor office

window ledge in the afternoon (it

is rather warm there in the afternoon sunlight) and it is easy to see when, as the light faded in the early

evening, I turned on the office light and then, later, turned it off when I left the office.

Sketch 22 is listed here in its entirety.

Sketch 22.

// MyLightTempLoggerB.ino

#include <SD.h>

#include <Wire.h>

logging interval: 2s

Log to file: xxxxxxxx,xxx

Write to serial port.

year,month,day,hour,minute,second,day_frac,light,T_C

2014/7/23 15:18:40 23.63796 715 28.31

2014/7/23 15:18:42 23.63799 680 27.99

2014/7/23 15:18:44 23.63801 677 27.99

2014/7/23 15:18:46 23.63803 680 28.31

2014/7/23 15:18:48 23.63806 681 27.99

2014/7/23 15:18:50 23.63808 684 27.34

2014/7/23 15:18:52 23.63810 851 28.96

2014/7/23 15:18:54 23.63813 913 28.63

2014/7/23 15:18:56 23.63815 915 28.63

2014/7/23 15:18:58 23.63817 927 28.31

Figure 8. Sample output from Sketch 22.

Figure 9. Recorded output from Sketch 22, 2-m intervals.

http://www.analog.com/en/mems-sensors/digital-temperature-sensors/tmp36/products/product.html
http://www.analog.com/en/mems-sensors/digital-temperature-sensors/tmp36/products/product.html
http://www.analog.com/en/mems-sensors/digital-temperature-sensors/tmp36/products/product.html
http://www.analog.com/en/mems-sensors/digital-temperature-sensors/tmp36/products/product.html

43

#include <RTClib.h>

#define ECHO_TO_FILE 0

#define ECHO_TO_SERIAL 1

// input

// [int]dt,[char]m or c,[12-char file name]xxxxxxxx.xxx

// example: 5,s,logfile1.csv

// Minimum sampling interval, 2s

File logfile; // the logging file

int Second,delay_t=1000,dt;

char intervalType, outFile[13];

int tempReading, photocellReading,Year,Month,Day,Hour,Minute;

float temperatureC;

const float aref_voltage=3.3;

const int photocellPin=0,tempPin=1,chipSelect=10;

RTC_DS1307 RTC; // Define real time clock object.

void getConfiguration() {

 char c; int n=0;

 while (Serial.peek()<0) {}

 dt=Serial.parseInt(); delay(10); Serial.read();

 intervalType=Serial.read(); delay(10); Serial.read();

 while (Serial.available()) {

 delay(10); if (Serial.available()>0) {

 c=Serial.read(); outFile[n]=c; n++;

 }

 }

 outFile[n]='\0';

}

void dataOutput() {

 photocellReading=analogRead(photocellPin); delay(10);

 tempReading=analogRead(tempPin); delay(10);

 temperatureC = (tempReading*aref_voltage/1024 - 0.5)*100;

 #if ECHO_TO_SERIAL

 Serial.print(Year); Serial.print('/'); Serial.print(Month);

 Serial.print('/'); Serial.print(Day); Serial.print(' ');

 Serial.print(Hour); Serial.print(':'); Serial.print(Minute);

 Serial.print(':'); Serial.print(Second);

 Serial.print(' ');

 Serial.print(Day+Hour/24.+Minute/1440.+Second/86400.,5);

 Serial.print(' '); Serial.print(photocellReading);

 Serial.print(' '); Serial.print(temperatureC,2);

 Serial.println();

 #endif // ECHO_TO_SERIAL

 #if ECHO_TO_FILE

 logfile.print(Year); logfile.print(',');

 logfile.print(Month); logfile.print(',');

 logfile.print(Day); logfile.print(',');

 logfile.print(Hour); logfile.print(',');

 logfile.print(Minute); logfile.print(',');

 logfile.print(Second); logfile.print(',');

44

 logfile.print(Day+Hour/24.+Minute/1440.+Second/86400.,5);

 logfile.print(','); logfile.print(photocellReading);

 logfile.print(','); logfile.print(temperatureC,2);

 logfile.println();

 logfile.flush(); // write to file

 #endif // ECHO_TO_FILE

}

void setup() {

 Serial.begin(9600);

 getConfiguration();

 Serial.print("logging interval: ");Serial.print(dt);

 Serial.println(intervalType);

 if ((intervalType=='s') && (dt<2))

 Serial.print("Configuration error. Restart!");

 Serial.print("Log to file: "); Serial.println(outFile);

 pinMode(10,OUTPUT);

 #if ECHO_TO_SERIAL

 Serial.println("Write to serial port.");

 Serial.println("year,month,day,hour,minute,second,day_frac,light,T_C");

 #endif // ECHO_TO_SERIAL

 #if ECHO_TO_FILE

 Serial.print("Initializing SD card...");

 if (!SD.begin(chipSelect)) {

 Serial.println("Card failed, or not present"); return; }

 else {

 Serial.println("card initialized."); }

 logfile=SD.open(outFile,FILE_WRITE);

 if (!logfile) {Serial.println("Could not create file."); return; }

 else {Serial.print("Logging to: "); Serial.println(outFile); }

 logfile.println("year,month,day,hour,minute,second,day_frac,light,T_C");

 #endif // ECHO_TO_FILE

 Wire.begin(); RTC.begin(); analogReference(EXTERNAL);

}

void loop() {

 DateTime now=RTC.now();

 Year=now.year(); Month=now.month(); Day=now.day();

 Hour=now.hour(); Minute=now.minute(); Second=now.second();

 if (intervalType=='s') {

 if ((Second%dt)==0) dataOutput();

 }

 if (intervalType=='m') {

 if ((Minute%dt==0) && (Second==0)) dataOutput();

 }

 delay(delay_t); // Don't process the same second twice!

}

 Sketch 23 is similar to Sketch 22, but it accepts as input a sampling interval in seconds or minutes

and then generates statistics over a longer interval, in minutes. For example, sampling every 10 seconds

45

over a five-minute interval generates mean, maximum, minimum, and standard deviation of an input

value based on 30 data samples (5 minutes = 300 seconds). With this code, it is not possible to generate

statistics over an interval of less than 1 minute. It is up to the user to provide input that makes sense.

Entering 10,s,5,logfile1.csv is appropriate, but, for example, 30,m,2,logfile1.csv

makes absolutely no sense!

The statistics calculations are of interest. The mean of n samples is straightforward:

The standard deviation s of n samples taken from a normally distributed (Gaussian) population of values,

the "sample standard deviation," is

For computational purposes, the sample standard deviation is calculated by totaling the sum of the X's and

the sum of the square of the X's as the X's are read one at a time.

The standard deviation calculation can always be performed on any set of values, but it assumes a

Gaussian distribution of the X values. Depending on what is being measured, this may or may not be true.

For example, when a quantity is changing over time rather than fluctuating randomly, as light levels and

temperatures are likely to do, a standard deviation calculated over some time interval may be interesting,

but it is no longer a standard deviation in the statistical sense.

 If values are constant over time, the standard deviation is 0 by definition. However, in that case,

real number math to calculate the quantity under the square root sign might result in a very small negative

number instead of 0, which can cause an error when the sqrt() function is used. To avoid this error, the

value of the expression under the square root should be tested and the standard deviation assigned a value

of 0 if that value is negative.

 Figure 10 shows temperature and light intensity data recorded on the inside window ledge of my

office, with 10-second sampling and statistics calculated over 5 minutes. The region with increased

standard deviation for both temperature and light intensity corresponds to fluctuations due to changing

cloud conditions. For data like these, the "standard deviation" is more properly interpreted just as a

measure of the variability of the quantity being measured during a sampling interval. The light intensity

appears to be "saturating" in the bright sunlight – that is, the resistance of the CdS photoresistor is no

longer changing linearly with light intensity. One could experiment with different photoresistors to

change this performance.

46

10-second sampling over 5-minutes.

Figure 10(a). Temperature, ºC. Figure 10(b). light intensity, arbitrary units.

Sketch 23.

// MyLightTempLoggerC.ino

#include <SPI.h>

#include <SD.h>

#include <Wire.h>

#include <RTClib.h>

#define ECHO_TO_FILE 1

#define ECHO_TO_SERIAL 0

// input [int]dt,[char]m or s,[int]dtSave,XXXXXXXX.CSV

// example: 10,s,5,logfile1.csv

// global variables

float sumX=0,sumY=0,sumXX=0,sumYY=0;

float maxTemperature=-

100,minTemperature=150,maxPhotocell=0,minPhotocell=1023;

int N,KNT=0;

File logfile; // the logging file

int Second,delay_t=1000,dt,dtSave;

char intervalType,outFile[13];

int tempReading, photocellReading,Year,Month,Day,Hour,Minute;

float temperatureC;

const float aref_voltage=3.3;

const int photocellPin=0,tempPin=1,chipSelect=10;

RTC_DS1307 RTC; // Define real time clock object.

// Read configuration parameters from serial port.

void getConfiguration() {

 char c; int n=0;

 while (Serial.peek()<0) {}

 dt=Serial.parseInt(); delay(10); Serial.read();

 delay(10);

47

 intervalType=Serial.read(); delay(10); Serial.read();

 delay(10);

 dtSave=Serial.parseInt(); delay(10); Serial.read();

 while (Serial.available()) {

 delay(10); if (Serial.available()>0) {

 c=Serial.read(); outFile[n]=c; n++;

 }

 }

 outFile[n]='\0'; N=dtSave*60/dt;

}

//--------------------

// Get data and display or log it.

void dataOutput(int N) {

 float std_devX,meanX,std_devY,meanY,day_frac,a;

 photocellReading=analogRead(photocellPin); delay(10);

 tempReading=analogRead(tempPin); delay(10);

 temperatureC = (tempReading*aref_voltage/1023 - 0.5)*100;

 sumX+=temperatureC; sumXX+=temperatureC*temperatureC;

 // (float) the square of the photocell reading to avoid integer overflow.

 sumY+=photocellReading; sumYY+=photocellReading*(float)photocellReading;

 KNT++;

 if (temperatureC>maxTemperature) maxTemperature=temperatureC;

 if (temperatureC<minTemperature) minTemperature=temperatureC;

 if (photocellReading>maxPhotocell) maxPhotocell=photocellReading;

 if (photocellReading<minPhotocell) minPhotocell=photocellReading;

 day_frac=Day+Hour/24.+Minute/1440.+Second/86400.;

 #if ECHO_TO_SERIAL

 Serial.print(Year); Serial.print('/'); Serial.print(Month);

 Serial.print('/'); Serial.print(Day); Serial.print(' ');

 Serial.print(Hour); Serial.print(':'); Serial.print(Minute);

 Serial.print(':'); Serial.print(Second);

 Serial.print(' '); Serial.print(day_frac,5);

 Serial.print(' '); Serial.print(temperatureC,4);

 Serial.print(' '); Serial.print(photocellReading);

 Serial.println();

 #endif // ECHO_TO_SERIAL

 if (KNT==N) {

 a=sumXX-sumX*sumX/N; if (a<0) a=0;

 std_devX=sqrt(a/(N-1));

 meanX=sumX/N;

 a=sumYY-sumY*sumY/N; if (a<0) a=0;

 std_devY=sqrt(a/(N-1));

 meanY=sumY/N;

 KNT=0; sumX=0; sumXX=0; sumY=0; sumYY=0;

 #if ECHO_TO_SERIAL

 Serial.print(Year); Serial.print('/'); Serial.print(Month);

 Serial.print('/'); Serial.print(Day); Serial.print(' ');

 Serial.print(Hour); Serial.print(':'); Serial.print(Minute);

48

 Serial.print(':'); Serial.print(Second

);

 Serial.print(' '); Serial.print(day_frac,5); Serial.print(' ');

 Serial.print(meanX,4); Serial.print(',');

 Serial.print(maxTemperature,4);

 Serial.print(','); Serial.print(minTemperature,4);

 Serial.print(','); Serial.print(std_devX,4); Serial.print(',');

 Serial.print(meanY,4); Serial.print(','); Serial.print(maxPhotocell);

 Serial.print(','); Serial.print(minPhotocell);

 Serial.print(','); Serial.print(std_devY,4); Serial.println();

 #endif // ECHO_TO_SERIAL

 #if ECHO_TO_FILE

 logfile.print(Year); logfile.print(','); logfile.print(Month);

 logfile.print(',');

 logfile.print(Day); logfile.print(','); logfile.print(Hour);

 logfile.print(',');

 logfile.print(Minute); logfile.print(','); logfile.print(Second);

 logfile.print(',');

 logfile.print(day_frac,5); logfile.print(',');

 logfile.print(meanX,4); logfile.print(',');

 logfile.print(maxTemperature,4);

 logfile.print(','); logfile.print(minTemperature,4);

 logfile.print(','); logfile.print(std_devX,4); logfile.print(',');

 logfile.print(meanY,4); logfile.print(',');

 logfile.print(maxPhotocell);

 logfile.print(','); logfile.print(minPhotocell);

 logfile.print(','); logfile.print(std_devY,4); logfile.println();

 logfile.flush(); // write to file

 #endif // ECHO_TO_FILE

 maxTemperature=-

100,minTemperature=150,maxPhotocell=0,minPhotocell=1023;

 }

}

//-------------------------------

void setup() {

 Serial.begin(9600);

 getConfiguration();

 Serial.print("sampling interval: "); Serial.print(dt);

Serial.println(intervalType);

 Serial.print("logging interval: ");

 Serial.print(dtSave); Serial.println(" minutes");

 if ((intervalType=='s') && (dt<2))

 Serial.print("Configuration error. Restart!");

 Serial.print("Log to file: "); Serial.println(outFile);

 pinMode(10,OUTPUT);

 #if ECHO_TO_SERIAL

 Serial.println("Write to serial port.");

 Serial.println("year,month,day,hour,minute,second,day_frac,T_mean,

49

 T_max,T_min,T_stdDev,Light_mean,PC_max,PC_min,PC_stdDev");

 #endif // ECHO_TO_SERIAL

 #if ECHO_TO_FILE

 Serial.print("Initializing SD card...");

 if (!SD.begin(chipSelect)) {

 Serial.println("Card failed, or not present"); return; }

 else {

 Serial.println("card initialized."); }

 //char filename[]=outFile;

 logfile=SD.open(outFile,FILE_WRITE);

 if (!logfile) {Serial.println("Could not create file."); return; }

 else {Serial.print("Logging to: "); Serial.println(outFile); }

 logfile.println("year,month,day,hour,minute,second,day_frac,T_mean,

 T_max,T_min,T_stdDev,PC_mean,PC_max,PC_min,PC_stdDev");

 #endif // ECHO_TO_FILE

 Wire.begin();

 RTC.begin();

 analogReference(EXTERNAL);

 do {

 DateTime now=RTC.now();

 Minute=now.minute(); Second=now.second();

 delay(10);

 } while ((Minute*60+Second)%(dtSave*60) != 0);

}

void loop() {

 DateTime now=RTC.now();

 Year=now.year(); Month=now.month(); Day=now.day();

 Hour=now.hour(); Minute=now.minute(); Second=now.second();

 if(Second%dt==0) dataOutput(N);

 delay(delay_t);

}

3.2 A High-Resolution Datalogger

3.2.1 Hardware

 Although the code development in 3.1.4 stands on its own, for many purposes an Arduino-based

datalogger is useful only if it is possible to attain a digital resolution much better than what is available

with the built-in 10-bit Arduino A/D conversion. Fortunately, the four-channel 16-bit ADS1115 board

mentioned at the beginning of this document (https://learn.adafruit.com/adafruit-4-channel-adc-breakouts)

makes this very easy!

First, download and install the required Adafruit_ADS1015.cpp and

Adafruit_ADS1015.h files from https://github.com/adafruit/Adafruit_ADS1X15 and install them in

their own folder, \libraries\Adafruit_ADS1015. Even though the names of these files imply

that they are for the 12-bit ADS1015 board, they also contain code for the 16-bit ADS1115 board. The

web page source for the library files includes an example sketch for testing the ADS1115 board and there

is no reason to duplicate it here.

https://learn.adafruit.com/adafruit-4-channel-adc-breakouts
https://github.com/adafruit/Adafruit_ADS1X15

50

The Adafruit data logging shield will still be used for its real time clock and SD card interface,

but unlike the applications discussed in Section 3.1, the voltage outputs from sensors are connected to the

ADS1115 inputs rather than directly to the Arduino's analog input pins. This project will use single-ended

inputs for four channels rather than differential inputs for two channels. The Arduino handles all the

communications with the ADS1115 and its four input channels through the SCL (clock) and SDA (data)

pins. It is simply a matter of "polling" these four input channels one at a time and converting the integer

value into an analog voltage. Figure 11(a) shows the connections needed for the ADS1115 board to

communicate with the Arduino board.

Figures 11(b) and (c) show a complete datalogger based on the Sparkfun 5-V Arduino Pro

microcontroller. Table 5 gives the components list. The Arduino Pro board has been chosen over the

Arduino Uno R3 because of its lower power consumption. The plug-in FTDI connector can be switched

between multiple devices, so only one is needed regardless of how many loggers you build. The prices

shown are for single units. Quantity discounts may be available.

The Arduino Pro is pin-compatible with the Arduino Uno R3 shown in Figure 1. The FTDI board

requires a USB mini-B connector rather than the Standard-B connector on the Uno R3. Standard-B

connectors are commonly used on printers, for example. Mini-B connectors are used on some digital

cameras such as those in the Canon PowerShot series. The ADS1115 power (5V) and ground connections

are visible coming from the upper right hand corner of the of the board. The other connections (refer to

the ADS1115 documentation) are made on the back side of the datalogger shield. The screw terminals

are, from right to left in this image, GND, GND, A0, A1, A2, A3.

Figure 11(a). Connection the ADS1115 board (see

https://learn.adafruit.com/downloads/pdf/adafruit-4-

channel-adc-breakouts.pdf).

Figure 11(b). 5-V ADS1115 A/D board with

Sparkfun Arduino Pro and FTDI/USB board

with Adafruit data logging shield.

 Figure 11(c). Back of data logging shield.

https://learn.adafruit.com/downloads/pdf/adafruit-4-channel-adc-breakouts.pdf
https://learn.adafruit.com/downloads/pdf/adafruit-4-channel-adc-breakouts.pdf

51

Table 5. Components for a high-resolution datalogger.

Component Source
Price

(as of July 2014)
Arduino Pro 5-V microcontroller, DEV-10915

www.sparkfun.com

$14.95

Female header pack, PRT-11269 $1.50

FTDI basic breakout board – 5V, DEV-09716 $14.95

Adafruit data logging Shield, PID 1141
www.adafruit.com

$19.95

ADS1115 16-bit 4-channel ADC, PID 1085 $14.95

3-position terminal block (2), ED2610-ND www.digikey.com $0.51 each

SD card Various sources ~$5-$7

Total cost (approximate, not including USB cable and shipping) ~$75

3.2.2 Programming

Sketch 24 is a modification of Sketch 22 which uses the hardware shown in Figure 4. The logic

for reading and recording data is the same as in Sketch 21, but the code for logging temperature and light

data at 10-bit resolution is replaced by code for accessing input from up to four voltage-producing sensors

connected to the ADS1115 board. Configuration parameters for controlling how the data are collected and

logged are read from the serial port window when the sketch is uploaded:

• (integer) the sampling interval in minutes or seconds

• (character) m or s, identifies the sampling interval as minutes or seconds

• (integer) a value that sets the gain for the ADS1115 board

• (string of characters) name of the output file (12 total characters, including extension)

Each parameter is separated with a comma, with no spaces. For example, 5,s,1,logfile1.csv will

sample data at 5-second intervals, using a GAIN_ONE setting (see Table 6, below), and log the data to

logfile1.csv if the ECHO_TO_FILE directive is set to 1.

 The pre-compile directives should be changed manually before the code is uploaded to the

microcontroller. The ECHO_TO_FILE directive turns data logging to an SD card on (1) or off (0) and the

ECHO_TO_SERIAL directive turns serial port output on or off. In both cases, there is some initial serial

port output to show the configuration parameters and to make sure that the SD card is working properly if

ECHO_TO_FILE is turned on. The ECHO_TO_SERIAL directive is useful for checking the operation of

the sketch, especially if you make changes to the code.

The ADS boards have six possible programmable gains, with resolutions as shown in Table 6 for

both the ADS1015 (12-bit) and ADS1115 (16-bit). (See ads1115.setGain(GAIN_ONE); in Sketch

24.) The total (±) input range applies to differential operation. The ADS board returns 16-bit signed

integers, so the effective digital-to-analog resolution for single-ended operation is only 15 bits. For

example, for single-ended operation at a GAIN_ONE setting the resolution is 4.096•2/2
15

 =

8.192/32767=0.250 mV, and the conversion from integer values from 0 to 32767 returned when the

inputs are polled is (Ax/32767)•4.096. You can test this calculation by connecting a 1.5V battery (or some

other known voltage source) between one of the inputs and ground, recording some data, and checking

the conversion from integer values to volts; use a voltmeter to monitor the actual voltage of the battery,

which will be above 1.5V when it is new.

http://www.sparkfun.com/
http://www.adafruit.com/
http://www.digikey.com/

52

 Although the default gain setting of GAIN_TWOTHIRDS has a stated range of ±6.144V, in fact

the voltage applied to any input channel should never exceed the power supply voltage (5V for the

hardware shown in Figure 5).

Table 6. Interpreting ADS gain settings.

Gain setting

Gain

setting

code

Input range,

differential/

single-ended

ADS1015/1115 resolution
ADS1015/1115

conversion to volts

GAIN_TWOTHIRDS

(default)
3 ±6.144V/0–6.144V 3 mV/0.375 mV

(Ax/4095)•6.144

(Ax/32767)•6.144

GAIN_ONE 1 ±4.096V/0–4.096V 2 mV/0.250 mV
(Ax/4095)•4.096

(Ax/32767)•4.096

GAIN_TWO 2 ±2.048V/0–2.048V 1 mV/0.125 mV
(Ax/4095)•2.048

(Ax/32767)•2.048

GAIN_FOUR 4 ±1.024V/0–1.024V 0.5 mV/0.0625 mV
(Ax/4095)•1.024

(Ax/32767)•1.024

GAIN_EIGHT 8 ±0.512V/0–0.512V 0.25 mV/0.03125 mV
(Ax/4095)•0.512

(Ax/32767)•0.512

GAIN_SIXTEEN 16 ±0.256V/0–0.256V 0.125mV/0.015625 mV
(Ax/4095)•0.256

(Ax/32767)•0.256

 Input channels with no voltage source connected will produce spurious and meaningless values.

They can be ignored, of course, and you don't even have to read values from unused channels, but it is

simpler just to read all the channels. It is a good idea to connect unused inputs to ground.

Sketch 24.

// HiResDataLogger.ino

// Format for serial port window input:

// [int]dt,[char]m or s,[int]gain 1,2,3 (for 2/3),4,8, or 16,

[string]xxxxxxxx.xxx

#include <SD.h>

#include <Wire.h>

#include <RTClib.h>

#include <Adafruit_ADS1015.h>

#define ECHO_TO_FILE 0

#define ECHO_TO_SERIAL 1

Adafruit_ADS1115 ads1115;

File logfile; // the logging file

int Second,delay_t=1000,dt,chipSelect=10,gain;

char intervalType, outFile[13];

int Year,Month,Day,Hour,Minute;

float DtoA;

RTC_DS1307 RTC; // Define real time clock object.

void getConfiguration() {

 char c; int n=0;

 while (Serial.peek()<0) {}

 dt=Serial.parseInt();

 delay(10); Serial.read(); intervalType=Serial.read();

 delay(10); Serial.read(); gain=Serial.parseInt();

 delay(10); Serial.read();

53

 while (Serial.available()) {

 delay(10); if (Serial.available()>0) {

 c=Serial.read(); outFile[n]=c; n++;

 }

 }

 outFile[n]='\0';

}

void dataOutput() {

 int16_t adc0,adc1,adc2,adc3;

 adc0 = ads1115.readADC_SingleEnded(0);

 adc1 = ads1115.readADC_SingleEnded(1);

 adc2 = ads1115.readADC_SingleEnded(2);

 adc3 = ads1115.readADC_SingleEnded(3);

 #if ECHO_TO_SERIAL

 Serial.print(Year); Serial.print('/'); Serial.print(Month);

 Serial.print('/'); Serial.print(Day); Serial.print(' ');

 Serial.print(Hour); Serial.print(':'); Serial.print(Minute);

 Serial.print(':'); Serial.print(Second);

 Serial.print(' ');

Serial.print(Day+Hour/24.+Minute/1440.+Second/86400.,5);

 Serial.print(' '); Serial.print(adc0);

 Serial.print(' '); Serial.print(adc1);

 Serial.print(' '); Serial.print(adc2);

 Serial.print(' '); Serial.print(adc3);

 Serial.println();

 #endif // ECHO_TO_SERIAL

 #if ECHO_TO_FILE

 logfile.print(Year); logfile.print(',');

 logfile.print(Month); logfile.print(',');

 logfile.print(Day); logfile.print(',');

 logfile.print(Hour); logfile.print(',');

 logfile.print(Minute); logfile.print(',');

 logfile.print(Second); logfile.print(',');

 logfile.print(Day+Hour/24.+Minute/1440.+Second/86400.,5);

 logfile.print(','); logfile.print(adc0);

 logfile.print(','); logfile.print(adc1);

 logfile.print(','); logfile.print(adc2);

 logfile.print(','); logfile.print(adc3);

 logfile.println();

 logfile.flush(); // write to file

 #endif // ECHO_TO_FILE

}

void setup() {

 Serial.begin(9600);

 getConfiguration();

 Serial.print("logging interval: ");Serial.print(dt);

 Serial.println(intervalType);

 Serial.print("Log to file: "); Serial.println(outFile);

 pinMode(10,OUTPUT);

54

 #if ECHO_TO_SERIAL

 Serial.print("ADS gain setting = "); Serial.println(gain);

 Serial.println("Write to serial port.");

 Serial.println("year,month,day,hour,minute,second,day_frac,A0,A1,A2,A3");

 #endif // ECHO_TO_SERIAL

 #if ECHO_TO_FILE

 Serial.print("Initializing SD card...");

 if (!SD.begin(chipSelect)) {

 Serial.println("Card failed, or not present"); return; }

 else {

 Serial.println("card initialized."); }

 logfile=SD.open(outFile,FILE_WRITE);

 if (!logfile) {Serial.println("Could not create file."); return; }

 else {Serial.print("Logging to: "); Serial.println(outFile); }

 logfile.println("year,month,day,hour,minute,second,day_frac,light,T_C");

 #endif // ECHO_TO_FILE

 Wire.begin(); RTC.begin(); ads1115.begin();

 Serial.print("Gain setting = ");

 switch(gain) {

 case 1: {ads1115.setGain(GAIN_ONE); DtoA=4.096/32768;

 Serial.println("GAIN_ONE"); break;}

 case 2: {ads1115.setGain(GAIN_TWO); DtoA=2.048/32768;

 Serial.println("GAIN_TWO"); break;}

 case 3: {ads1115.setGain(GAIN_TWOTHIRDS); DtoA=6.144/32768;

 Serial.println("GAIN_TWOTHIRDS"); break;}

 case 4: {ads1115.setGain(GAIN_FOUR); DtoA=1.024/32768;

 Serial.println("GAIN_FOUR"); break;}

 case 8: {ads1115.setGain(GAIN_EIGHT); DtoA=0.512/32768;

 Serial.println("GAIN_EIGHT"); break;}

 case 16: {ads1115.setGain(GAIN_SIXTEEN); DtoA=0.256/32768;

 Serial.println("GAIN_SIXTEEN"); break;}

 default: {Serial.println("Oops... no such gain setting!"); return; }

 }

}

void loop() {

 DateTime now=RTC.now();

 Year=now.year(); Month=now.month(); Day=now.day();

 Hour=now.hour(); Minute=now.minute(); Second=now.second();

 if (intervalType=='s') {

 if ((Second%dt)==0) dataOutput();

 }

 if (intervalType=='m') {

 if ((Minute%dt==0) && (Second==0)) dataOutput();

 }

 delay(delay_t);

}

55

 Sketch 25 is a modification of Sketch 23. It calculates statistics for each of the four input

channels. For example, 10,s,5,logfile1.csv samples data every 10 seconds and calculates

statistics with thirty values over 5 minutes. Statistics cannot be calculated over an interval of less than 1

minute. The longest time period for calculating statistics is one hour (specify 0 minutes in the

configuration input).

Sketch 25.

//HiResDataLoggerB

// Format for serial port window input:

// [int]dt,[char]m or s,[int]dtSave (1-60),

// [int]gain 1,2,3 (for 2/3),4,8, or 16,[string]xxxxxxxx.xxx

#include <SD.h>

#include <Wire.h>

#include <RTClib.h>

#include <Adafruit_ADS1015.h>

#define ECHO_TO_FILE 0

#define ECHO_TO_SERIAL 1

Adafruit_ADS1115 ads1115;

float max0=-100.,min0=100.,max1=-100.,min1=100.;

float max2=-100.,min2=100.,max3=-100.,min3=100.;

float sumX0=0.,sumXX0=0.,sumX1=0.,sumXX1=0.,sumX2=0.;

float sumXX2=0.,sumX3=0.,sumXX3=0.;

float std_dev0,mean0,std_dev1,mean1,std_dev2,mean2,std_dev3,mean3;

float adc0,adc1,adc2,adc3;

float DtoA,dayFrac;

File logfile; // the logging file

int N,KNT=0;

int delay_t=1000,dt,dtSave,chipSelect=10,gain;

int Year,Month,Day,Hour,Minute,Second;

char intervalType, outFile[13];

RTC_DS1307 RTC; // Define real time clock object.

void getConfiguration() {

 char c; int n=0;

 while (Serial.peek()<0) {}

 dt=Serial.parseInt();

 delay(10); Serial.read(); intervalType=Serial.read();

 delay(10); dtSave=Serial.parseInt();

 delay(10); Serial.read(); gain=Serial.parseInt();

 delay(10); Serial.read();

 while (Serial.available()) {

 delay(10); if (Serial.available()>0) {

 c=Serial.read(); outFile[n]=c; n++;

 }

 }

 outFile[n]='\0';

 if (intervalType=='s') N=dtSave*60/dt; else N=dtSave/dt;

}

void dataOutput() {

56

 adc0 = DtoA*ads1115.readADC_SingleEnded(0);

 sumX0+=adc0; sumXX0+=adc0*adc0;

 adc1 = DtoA*ads1115.readADC_SingleEnded(1);

 sumX1+=adc1; sumXX1+=adc1*adc1;

 adc2 = DtoA*ads1115.readADC_SingleEnded(2);

 sumX2+=adc2; sumXX2+=adc2*adc2;

 adc3 = DtoA*ads1115.readADC_SingleEnded(3);

 sumX3+=adc3; sumXX3+=adc3*adc3;

 KNT++;

 if (adc0>max0) max0=adc0; if (adc0<min0) min0=adc0;

 if (adc1>max1) max1=adc1; if (adc1<min1) min1=adc1;

 if (adc2>max2) max2=adc2; if (adc2<min2) min2=adc2;

 if (adc3>max3) max3=adc3; if (adc3<min3) min3=adc3;

 dayFrac=Day+Hour/24.+Minute/1440.+Second/86400.;

 #if ECHO_TO_SERIAL

 Serial.print(Year); Serial.print('/'); Serial.print(Month);

 Serial.print('/'); Serial.print(Day); Serial.print(',');

 Serial.print(Hour); Serial.print(':'); Serial.print(Minute);

 Serial.print(':'); Serial.print(Second); Serial.print(',');

 Serial.print(dayFrac,5); Serial.print(',');

 Serial.print(adc0,5); Serial.print(',');

 Serial.print(adc1,5); Serial.print(',');

 Serial.print(adc2,5); Serial.print(',');

 Serial.print(adc3,5); Serial.println();

 #endif // ECHO_TO_SERIAL

 if (KNT==N) {

// Protect against small negative values

 // (possible with real number arithmetic

// under some conditions when the values

// don't change during sampling interval).

 std_dev0=sqrt(max(0,(sumXX0-sumX0*sumX0/N)/(N-1)));

 std_dev1=sqrt(max(0,(sumXX1-sumX1*sumX1/N)/(N-1)));

 std_dev2=sqrt(max(0,(sumXX2-sumX2*sumX2/N)/(N-1)));

 std_dev3=sqrt(max(0,(sumXX3-sumX3*sumX3/N)/(N-1)));

 mean0=sumX0/N; mean1=sumX1/N; mean2=sumX2/N; mean3=sumX3/N;

 #if ECHO_TO_SERIAL

 Serial.print(Year); Serial.print('/'); Serial.print(Month);

 Serial.print('/'); Serial.print(Day); Serial.print(',');

 Serial.print(Hour); Serial.print(':'); Serial.print(Minute);

 Serial.print(':'); Serial.print(Second); Serial.print(',');

 Serial.print(dayFrac,5); Serial.print(',');

 Serial.print(mean0,5); Serial.print(','); Serial.print(max0,5);

Serial.print(',');

 Serial.print(min0,5); Serial.print(','); Serial.print(std_dev0,8);

 Serial.print(',');

 Serial.print(mean1,5); Serial.print(','); Serial.print(max1,5);

 Serial.print(',');

 Serial.print(min1,5); Serial.print(','); Serial.print(std_dev1,8);

57

 Serial.print(',');

 Serial.print(mean2,5); Serial.print(','); Serial.print(max2,5);

 Serial.print(',');

 Serial.print(min2,5); Serial.print(','); Serial.print(std_dev2,8);

 Serial.print(',');

 Serial.print(mean3,5); Serial.print(','); Serial.print(max3,5);

 Serial.print(',');

 Serial.print(min3,5); Serial.print(','); Serial.println(std_dev3,8);

 #endif //ECHO_TO_SERIAL

 #if ECHO_TO_FILE

 logfile.print(Year); logfile.print('/'); logfile.print(Month);

 logfile.print('/'); logfile.print(Day); logfile.print(',');

 logfile.print(Hour); logfile.print(':'); logfile.print(Minute);

 logfile.print(':'); logfile.print(Second); logfile.print(',');

 logfile.print(dayFrac,5); logfile.print(',');

 logfile.print(mean0,5); logfile.print(','); logfile.print(max0,5);

 logfile.print(',');

 logfile.print(min0,5); logfile.print(','); logfile.print(std_dev0,8);

 logfile.print(',');

 logfile.print(mean1,5); logfile.print(','); logfile.print(max1,5);

 logfile.print(',');

 logfile.print(min1,5); logfile.print(','); logfile.print(std_dev1,8);

 logfile.print(',');

 logfile.print(mean2,5); logfile.print(','); logfile.print(max2,5);

 logfile.print(',');

 logfile.print(min2,5); logfile.print(','); logfile.print(std_dev2,8);

 logfile.print(',');

 logfile.print(mean3,5); logfile.print(','); logfile.print(max3,5);

 logfile.print(',');

 logfile.print(min3,5); logfile.print(',');

 logfile.println(std_dev3,8);

 logfile.flush();

 #endif //ECHO_TO_FILE

 KNT=0;

 max0=-100.,min0=100.,max1=-100.,min1=100.,max2=-100.;

 sumX0=0.,sumXX0=0.,sumX1=0.,sumXX1=0.,sumX2=0.;

 sumXX2=0.,sumX3=0.,sumXX3=0.;

 }

}

void setup() {

 Serial.begin(9600); getConfiguration();

 Serial.print("sampling interval, logging interval: ");Serial.print(dt);

 Serial.print(intervalType);

 Serial.print(", ");Serial.print(dtSave);Serial.println('m');

 Serial.print("statistics computed with ");

 Serial.print(N);Serial.println(" samples.");

 pinMode(10,OUTPUT);

 #if ECHO_TO_SERIAL

 Serial.print("ADS gain setting = "); Serial.println(gain);

58

 Serial.println("Write to serial port.");

// no line breaks allowed in code! Put print string all on one line.

 Serial.println("date,time,day_frac,A0_mean,A0_max,A0_min,A0_stddev,

 A1_mean,A1_max,A1_min,A1_stddev,A2_mean,A2_max,A2_min,A2_stddev,

 A3_mean,A3_max,A3_min,A3_stddev");

 #endif // ECHO_TO_SERIAL

 #if ECHO_TO_FILE

 Serial.print("Initializing SD card...");

 if (!SD.begin(chipSelect)) {

 Serial.println("Card failed, or not present"); return; }

 else {

 Serial.println("card initialized."); }

 logfile=SD.open(outFile,FILE_WRITE);

 if (!logfile) {Serial.println("Could not create file."); return; }

 else {Serial.print("Logging to: "); Serial.println(outFile); }

// no line breaks allowed in code! Put print string all on one line.

 logfile.println("date,time,day_frac,A0_mean,A0_max,A0_min,A0_stddev,

 A1_mean,A1_max,A1_min,A1_stddev,A2_mean,A2_max,A2_min,A2_stddev,

 A3_mean,A3_max,A3_min,A3_stddev");

 #endif // ECHO_TO_FILE

 Wire.begin(); RTC.begin(); ads1115.begin();

 Serial.print("Gain setting = ");

 switch(gain) {

 case 1: {ads1115.setGain(GAIN_ONE); DtoA=4.096/32768;

 Serial.println("GAIN_ONE"); break;}

 case 2: {ads1115.setGain(GAIN_TWO); DtoA=2.048/32768;

 Serial.println("GAIN_TWO"); break;}

 case 3: {ads1115.setGain(GAIN_TWOTHIRDS); DtoA=6.144/32768;

 Serial.println("GAIN_TWOTHIRDS"); break;}

 case 4: {ads1115.setGain(GAIN_FOUR); DtoA=1.024/32768;

 Serial.println("GAIN_FOUR"); break;}

 case 8: {ads1115.setGain(GAIN_EIGHT); DtoA=0.512/32768;

 Serial.println("GAIN_EIGHT"); break;}

 case 16: {ads1115.setGain(GAIN_SIXTEEN); DtoA=0.256/32768;

 Serial.println("GAIN_SIXTEEN"); break;}

 default: {Serial.println("Oops... no such gain setting!"); return; }

 }

 do { // wait until multiple of dtSave minutes, 0 sec

 DateTime now=RTC.now();

 Minute=now.minute(); Second=now.second();

 } while ((Minute%dtSave+Second) !=0);

}

void loop() {

 DateTime now=RTC.now();

 Year=now.year(); Month=now.month(); Day=now.day();

 Hour=now.hour(); Minute=now.minute(); Second=now.second();

 if (intervalType=='s') {

 if ((Second%dt)==0) dataOutput();

 }

59

 else {

 if ((Minute%dt)==0) dataOutput();

 }

 delay(delay_t); // Don't process the same second twice.

}

 Figure 12 shows data from one channel of an ADS1115 board, collected using Sketch 25. The

data are from a pyranometer (http://www.instesre.org/construction/pyranometer/pyranometer.htm) which

measures incoming solar radiation. Sampling starts at a multiple of 5 minutes, with sampling every 10

seconds thereafter and statistics generated every 5 minutes. Initially the pyranometer is in shadow. It

emerges from the shadow at around 24.39 days. The sky was partly cloudy with scattered to broken

cumulus, which explains the large swings between maximum and minimum values and the corresponding

swings in standard deviation. (Recall the comments about standard deviation calculations in the

discussion of Sketch 23.)

The gain was set to 16. Even though the voltages are small compared to the total range of 0.256V,

the 16-bit resolution is still more than adequate for this measurement. For a calibrated pyranometer

(which this one wasn't) the sketch could be modified to convert voltage to watts/m
2
.

Figure 12. Sample statistics output from one channel of an ADS1115 board.

http://www.instesre.org/construction/pyranometer/pyranometer.htm

60

4. SOME ADDITIONAL CONSIDERATIONS

4.1 Expanding the Number of High-Resolution Channels

 Because up to four different addresses can be assigned to each ADS1015 or 1115 board, up to

four boards can be connected at the same time. For details, see https://learn.adafruit.com/adafruit-4-

channel-adc-breakouts. Whether this is worthwhile or not depends on your application. Calculating

statistics for each channel produces 4 values per channel (mean, maximum, minimum, and standard

deviation), a total of 16 values for one board. This is potentially a lot of data to handle. On the plus side,

you can assign different gain settings to each board.

4.2 Enclosures for Your Arduino Datalogger

 Finding an appropriate enclosure for an Arduino project is not just a matter of appearances. Using

any kind of exposed electronics in very humid environments or in a situation where moisture can

condense on a pc board must be avoided, as this will almost certainly destroy the board. There are

commercial enclosures for Arduinos, but they can be relatively expensive and they are certainly not

necessarily weatherproof. (A simple plastic enclosure from Sparkfun, PRT-10088, cost $12 in July, 2014,

compared to only $15 for an Arduino Pro board.) It is possible to make your own enclosures much more

cheaply using, for example, standard plastic household electric outlet boxes and covers from your local

home supply or hardware store. You will have to cut holes for the USB cable and power supply – a

Dremel tool is useful for this, although it can be done with a drill and sharp knife. You could also use a

"snap top" plastic sandwich container. In any case, for outdoor use, it is a good idea to fill any container

with something which will absorb moisture, such as uncooked rice or cat litter.

4.3 Powering Your Arduino Datalogger

 Even when they are not powering sensors, Arduinos used as dataloggers require a lot of power

compared to something like the four-channel Onset Computer Corporation UX120-006M loggers, which

will run continuously for months on two AAA batteries (www.onsetcomp.com/products/data-

loggers/ux120-006m). This isn't a problem for indoor applications near a computer because any of the

projects described in this document will happily run on power supplied through a USB port. But what

about applications away from a power source?

 Figure 13 shows voltage as a function of time, at room temperature, using six Duracell ProCell

alkaline D cells in series (using a two-cell holder and a four-cell holder, www.allelectronics.com

 BH-143 and BH-141) epoxied together and wired in series). The initial voltage is a little less than 9V

because the batteries were not brand new when I used them for this test. They are powering an Arduino

Uno R3 board and Adafruit data logging shield with an ADS1115 board. Data from all four channels are

logged to an SD card file every 30 seconds. As shown in Figure 13, battery voltage is decreasing by a few

tenths of a volt per day, indoors at room temperature. Possibly the rate of decrease with an Arduino Pro

board would be smaller.

Is this typical performance? It is hard to say. Battery discharge rates will depend on what you are

asking your microcontroller to do, and on temperature. Outdoors in cold weather, battery life will be

shortened, perhaps considerably. So, in any critical data logging operation, you should check the battery

voltage regularly. Whenever the voltage reaches 7V, the batteries need to be replaced; at a lower voltage

the microcontroller's on-board voltage regulator will stop functioning.

https://learn.adafruit.com/adafruit-4-channel-adc-breakouts
https://learn.adafruit.com/adafruit-4-channel-adc-breakouts
http://www.onsetcomp.com/products/data-loggers/ux120-006m
http://www.onsetcomp.com/products/data-loggers/ux120-006m
http://www.allelectronics.com/

61

Is using batteries a

reasonable solution? That is a

financial question rather than a

technical one. In July 2014, a 12-

pack of D-cell Energizer alkalines

cost $10.95 and a 72-pack was

$59.70 from www.batterymart.com.

 Rechargeable batteries are

tempting, but expensive! From the

same source, a single rechargeable

D cell was $10.95 and a charger for

up to four D cells was $27.95. A

9-V rechargeable battery would

work for short-term testing – $6.75

for a NiMH rechargeable plus $8

for a two-battery charger from www.batterymart.com – but these batteries will not last long in the field..

It might be tempting to use 8 1.5-V batteries in series, for an initial voltage of a little more than

12 V when the batteries are new, so you wouldn't have to change batteries so often. But I would avoid this

temptation. When you connect an external power supply to the Arduino Uno (using the 2.1 mm jack), that

voltage is delivered to a 7805 5-V regulator on the Uno board. So-called linear regulators like the 7805

are not very efficient devices. Excess power ((input voltage – 5V) × current) must be dissipated as heat by

the regulator and board. (That is why some versions of 780x regulators have a metal tab for connecting to

an external heat sink – see the example shown below in Figure 14.) Even though the 7805 regulators on

Arduino boards are rated for an input up to 18V, excess heat from an input greater than 12V may damage

the regulator and the board. The 9(+) volts generated from 6 1.5-V batteries connected in series may

generate some heat on the board, but it shouldn't cause problems.

For powering your Arduino away from your computer, but where you still have access to 110V

power, you can use a "wall wart" power supply, but be careful! Consider a typical transformer-based wall

wart rated 9V at 300 mA. This means that it will supply 9V to a circuit drawing 300 mA. However, for

lower current loads, the voltage will be much higher – 14 or 15 volts or even higher. As most Arduino

applications draw very little current, this means that the onboard regulator will be dissipating more heat

than you think due to an input voltage that is much higher than 9V. A better solution is to use a regulated

(“switching”) supply such as the $7 ID 9V, 1A, supply from adafruit.com. Regulated supplies tend to be

more expensive than transformer-based supplies, but they are by far a better choice for working with

Arduinos.

For long-term continuous outdoor operation away from a power source, solar power is a

reasonable approach, but you need to be careful. Typically, such a system consists of a 12-V lead-acid

battery and a solar battery charger. One solution, from www.batterymart.com, is shown in Figure 14. This

battery charger/maintainer will charge lead-acid batteries rated at up to 10 Ah. It has suction cups so you

can mount it on a window; it will work reasonably well even if it is mounted indoors on a window

(ideally south-facing). The battery in Figure 14 is 100 cm (4") long. The solar panel is 240 cm (9.5")

square.

Figure 13. Battery voltage from 6 Energizer alkaline D cells, with

Uno R3, Adafruit data logging shield and ADS1115 board,

logging every 30 seconds.

http://www.batterymart.com/
http://www.batterymart.com/
http://www.batterymart.com/

62

www.batterymart.com/p-12v-1_3ah-sealed-lead-acid-battery.html

SLA-12V1-3, $12.95 (July 2014)

www.batterymart.com/p-blsolar-2-12v-2_5w-solar-panel.html ACC-

BLSOLAR2, $24.95 (July 2014)

Figure 14. Components for a solar-charged battery supply.

Figure 15 shows a lead acid battery and a 6 D-cell

battery pack, with several interchangeable connectors.

A lead-acid battery can be charged to well over

12V and, as noted above, this can cause heat dissipation

problems if connected directly to an Arduino board. My

advice is to not connect a lead-acid battery directly to the

power input on an Arduino board. To protect the onboard

voltage regulator, you could connect an LM7809 9-V

regulator between the battery and the board's power input,

which will keep the heat generation to an acceptably low

level on the board.

This is a workable solution, but using two 780x

voltage regulators – one onboard and another off-board, is not

very efficient! It is much more efficient to connect the output

from a solar-charged battery to a "synchronous buck voltage

regulator" such as the D24V5F9 from Pololu Robotics &

Electronics (https://www.pololu.com/product/2845) and

connect the output of that device to your Uno either through

the power input jack or the Vin pin. These buck down

regulators, which are very efficient devices, are more

expensive than LM780x devices, ~$5 rather than <$1, but they

are worth the cost. Figure 16 shows one of these regulators

next to an LM7809 regulator in a TO-220 package. Their pins are on 0.1" centers, just like the TO-220

pins, so they are easy to use with a standard breadboard. They do not need a tab for connection to a heat

sink because they don’t have to dissipate heat like linear regulators do.

Figure 15. 12-V lead-acid battery and 9-V

D-cell pack with interchangeable
connectors.

Figure 16. D24V5F9 buck down

regulator next to a LM7809 regulator
in a TO-220 package.

http://www.batterymart.com/p-12v-1_3ah-sealed-lead-acid-battery.html
http://www.batterymart.com/p-blsolar-2-12v-2_5w-solar-panel.html
https://www.pololu.com/product/2845

63

Although I have noted above that the power demands of an Arduino-based datalogger, even

without the power requirements of sensors, are large relative to similar commercial data loggers, for many

projects under reasonable sun conditions (even in winter?) those demands can be met by even a small 12-

V 1.2Ah lead-acid battery such as the one shown in Figure 15. There is, of course, nothing wrong with

using a larger battery for projects that require power support for sensors. The performance of lead-acid

batteries is very temperature-dependent. They should be kept charged and not subjected to deep

discharges – a condition which shouldn't be a problem in this application. Once in use, lead-acid batteries

should not be removed from a charger for long periods of time. Treated properly, they will last for a long

time.

Be careful about trying to use a solar panel voltage controller such as the SCN-3 from

www.allelectronics.com ($29.95). These devices have one pair of input terminals for the solar panel and

two pairs of output terminals – one for the battery and another for the load. The load terminals may

automatically turn off if the battery falls below 12V. These devices should work OK if you make

connections to the battery out terminals. The current draw even from a relatively inefficient 9-V regulator

powering an Arduino project will often be small enough that it should not prevent the battery from

charging in sunlight when it is connected to an Arduino board.

http://www.allelectronics.com/

