
1

Arduino Uno and Solar Position Calculations
© David Brooks, February 2015

Institute for Earth Science Research and Education www.instesre.org

 With the advent of Arduino microcontrollers and associated hardware for controlling motors, including

stepper motors, there has been considerable interest in using this inexpensive open-source device to power sun

trackers. There are two basic approaches to this problem. The first is to use light sensors (typically four of them) to

find the sun by looking for the brightest source of light and using two stepper motors to drive a two-axis system to

point toward that source.

 This approach is hardware-intensive because of managing the light sensors. It is also prone to errors if

there are stray sources of light and on cloudy days. A second approach takes advantage of the fact that, in principle,

the position of the sun in the sky – specifically its elevation and azimuth angles – can be calculated based on well-
known astronomical equations. The potential problem for the Arduino computing environment is that these

equations require a lot of high-precision math. This document addresses the question of whether the Arduino Uno is

up to this challenge. As it turns out, Arduino Uno math will calculate solar positions to an accuracy which is beyond

that of the pointing capabilities of a reasonably priced stepper motor-driven two-axis positioning system.

Implementing such a system requires an accurate longitude and latitude and correct positioning of the system –

horizontal and aligned with geographic north (not magnetic north). That is, north-south is along a meridian from

north pole to south pole.1

 All the equations in this document are from Meeus’ 1991 classic book, Astronomical Algorithms,2 and

they are numbered according to that book.

 The algorithm for calculating Julian date for a specified year, month, day, hour, minute, and second is:

if month ≤ 2, y′ = year - 1, m′ = month + 12

otherwise y′ = year, m′ = month

A = <floor>(y′/100)

B = 2 + A + <floor>(A/4)

Julian Date = <floor>[365.25•(y′ + 4716)] + <floor>[30.6001•(m′ + 1)] + day + B –

 1524.5 + (hour + minute/60 + second/3600)/24 (7.1)

where <floor> means to take the integer part of the calculation without rounding. That is, <floor>(17.7) is 17, not

18. In Arduino programming, an (int) type cast will do this. Since the numbers are all positive, there is no

concern about what a <floor> or <int> operation will do with negative numbers.

 The Julian Date is a decimal number which in principle should be expressed to the nearest second

(1/86400 of a day). But it is a large number, with a value of 2457024.0 on January 1, 2015, 12:00:00 UT. The

precision of floating point numbers on the Arduino Uno is no better than 7 digits, so the fractional part of a Julian

Date is essentially lost in Arduino Uno floating point math.3

 The solution is to separate the integer and fractional parts, because type long integers will handle values

up to 2,147,483,647:

Julian Date (whole, use type long) = <floor>[365.25•(y′ + 4716)] + <floor>[30.6001•(m′ + 1)] + day + B - 1524

Julian Date (fraction, use type float) = (hour + minute/60 + second/3600)/24 – 0.5

The fact that the fractional Julian Date may be negative is OK.

1
 By definition, the sun’s shadow falls along a north-south meridian at local solar noon (not local clock noon), which

can be found using online solar position calculators. See, for example, http://www.instesre.org/Solar/insolation.htm

or http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html.
2 Jean Meeus, Astronomical Algorithms, 1st English Edition. Willmann-Bell, Inc. Richmond, VA, 1991. A 2nd

edition is now available.
3 The Arduino Due supports “double precision” floating point numbers, which could solve this problem, but using

that hardware seems justified only if the Arduino Uno is simply not up to this task.

http://www.instesre.org/
http://www.instesre.org/Solar/insolation.htm
http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html

2

 Now for the solar position calculations. These define the sun’s position in heliocentric space relative to a

pre-determined starting point and then transform the position to local Earth equatorial coordinates relative to the

Greenwich meridian. For additional discussion of these quantities, see Meeus’ book. Angles calculated in degrees

must be converted to radians (multiply value in degrees by π/180) when they are used in trigonometric functions.

 T is the number of Julian centuries (36525 days) since 12h:00m:00s Universal Time,4 Jan 1, 2000:

T = (Julian Date – 2451545)/36525 (24.1)

The suggested implementation in Arduino code is:

long JD_whole;

float T, JD_frac;

T = JD_whole - 2451545; T = (T + JD_frac)/36525.;

Solar longitude Lo (deg):

280.46645+36000.76983•T+0.0003032•T2 (24.2)

Solar mean anomaly M (deg):

357.5291 + 35999.0503•T - 0.0001559•T2 - 0.00000048•T3 (24.3)

Eccentricity of Earth’s orbit e:

0.016708617-0.000042037•T -0.0000001236•T2 (24.4)

Sun’s equation of center C (deg):

(1.9146 - 0.004847•T - 0.000014•T2) •sin(M) + (0.019993 - 0.000101•T) •sin(2•M) + 0.00029•sin(3•M)\

 (p152)

Solar true longitude Ltrue (deg):

C + Lo (p152)

Solar true anomaly f (deg):

M + C (p152)

Earth distance from sun R (AU):

1.000001018•(1 – e2)/[1 + e•cos(f)] (24.5)

Greenwich hour angle (deg):

280.46061837 + 360.98564736629•(JD - 2451545) + 0.000387933•T2 – T3/38710000 (11.4)

Obliquity of the equator (deg):

23 + 26/60 + 21.448/3600 - 46.815/3600•T – (0.00059/3600)•T2 + (0.001813/3600)•T3 (21.2)

Right ascension:

tan-1[(sin(Ltrue) •cos(Obliquity)/cos(Ltrue)] (12.3)

4 Universal time is standard time at the Greenwich meridian (longitude = 0º).

3

Declination:

sin-1[sin(Obliquity) •sin(Ltrue)] (12.4)

Hour angle:

Greenwich hour angle + longitude – right ascension

Azimuth of sun (measured eastward from north, add π)

tan-1{sin(Hour angle)/[cos(Hour angle) •sin(Latitude) – tan(Declination) •cos(Latitude)]} (12.5)

Elevation of sun

sin-1[sin(Lat) •sin(Declination) + cos(Latitude) • (cos(Declination) •cos(Hour angle)] (12.6)

 These equations include many terms which give very small numbers, such as 0.001813/3600•T3 in (21.2)

Can the terms with higher orders of T, which is currently a number roughly equal to 0.15, be ignored? Are there
cumulative errors associated with these small terms that can cause loss of accuracy over time?

 Not unexpectedly, at least for dates not in the distant future (certainly as long as T is less than 1), the results

calculated without these higher-order T terms are identical in Arduino math with those that include the higher-order

terms because the value of those higher order terms is essentially ignored. However, this fact does not mean that

there won’t be errors due to the limited precision of Arduino Uno real number math. The Greenwich hour angle

calculation is a problem. For example, the Julian Date for 12:00:00 UT on June 21, 2015 is 2457195. The term

360.98564736629•(JD - 2451545)=2039568.91. Just the whole part of this number requires 7-digit precision, but

because of Earth’s rotation relative to the sun, it is the fractional part that is critical to tracking solar position during

a day. Thus, this calculation will be not be accurate. It follows, then, that the calculation of the local hour angle will

be similarly inaccurate and, following that, the calculation for azimuth angle will be inaccurate. For Arduino math,

this rewrite of the equation for Greenwich hour angle will alleviate the problem:

long JD_whole,JDx;

float JD_frac, GrHrAngle;

…

JDx=JD_whole-2451545;

GrHrAngle=280.46061837+(360*JDx)%360+0.98564736629*(JDx)+360.98564736629*JD_frac;

Calculating the “big number” as a type long integer and applying the integer mod operator gets rid of the too-large

result of performing the entire calculation using real number math; in context, the result of the integer mod operation

will be converted to a floating point number less than 360.0 in the calculation.

 The table below compares solar position elevation and azimuth angle calculations done in Excel and

Arduino for June 21, 2015 and December 21, 2015. (The Excel calculations retain all the higher-order terms in T

and the Arduino calculations do not.) Real number calculations in Excel (and other computer applications which

follow the IEEE 754 specification for storing and calculating floating-point numbers, see

http://support.microsoft.com/kb/78113) are done with 15-digit precision – twice that of Arduino math. But even with

this reduced precision, the maximum difference between the two calculations for elevation or azimuth is less than

0.002º.

http://support.microsoft.com/kb/78113

4

Comparison of solar position calculations from Excel and Arduino Uno.

June 21, 2015 December 21, 2015

Excel Arduino Uno Excel Arduino Uno

local
hour min sec

Elevation
(deg)

Azimuth
(deg)

Elevation
(deg)

Azimuth
(deg)

Elevation
(deg)

Azimuth
(deg)

Elevation
(deg)

Azimuth
(deg)

4 0 0 -5.7584 52.6659

5 0 0 3.9347 62.4369 3.9350 62.4370

6 0 0 14.4962 71.3769 14.4960 71.3770

7 0 0 25.6184 80.0108 25.6190 80.0110 -3.8800 117.6107

8 0 0 37.0417 89.0132 37.0420 89.0130 5.8057 127.3857 5.8060 127.3860

9 0 0 48.4861 99.4738 48.4860 99.4730 14.2220 138.4407 14.2220 138.4410

10 0 0 59.4964 113.6657 59.4960 113.6660 20.8584 151.0838 20.8580 151.0840

11 0 0 68.9263 137.1846 68.9260 137.1850 25.1369 165.2919 25.1370 165.2920

12 0 0 73.4329 178.5533 73.4330 178.5550 26.5621 180.4993 26.5620 180.4990

13 0 0 69.3859 220.8900 69.3860 220.8900 24.9412 195.6700 24.9410 195.6700

14 0 0 60.1246 245.2711 60.1240 245.2720 20.4923 209.7871 20.4920 209.7870

15 0 0 49.1647 259.8137 49.1650 259.8140 13.7227 222.3226 13.7220 222.3230

16 0 0 37.7304 270.4153 37.7300 270.4160 5.2096 233.2826 5.2090 233.2830

17 0 0 26.2972 279.4679 26.2970 279.4680 -4.5437 242.9887

18 0 0 15.1498 288.1026 15.1500 288.1020

19 0 0 4.5468 297.0085 4.5470 297.0090

20 0 0 -5.2086 306.7163

Here is the Arduino Uno code for these calculations. This code can be used for any non-commercial purpose. Please

acknowledge the source if you use the code. When compiled, this code occupies 7,010 bytes of the 32,256 byte

maximum on the Arduino Uno.

/*

This program calculates solar positions as a function of location, date, and time.

The equations are from Jean Meeus, Astronomical Algorithms, Willmann-Bell, Inc., Richmond, VA

(C) 2015, David Brooks, Institute for Earth Science Research and Education.

*/

#define DEG_TO_RAD 0.01745329

#define PI 3.141592654

#define TWOPI 6.28318531

void setup() {

 int hour,minute=0,second=0,month=6,day=21,year,zone=5;

 float Lon=-75*DEG_TO_RAD, Lat=40*DEG_TO_RAD;

 float T,JD_frac,L0,M,e,C,L_true,f,R,GrHrAngle,Obl,RA,Decl,HrAngle,elev,azimuth;

 long JD_whole,JDx;

 Serial.begin(9600);

 Serial.print("Longitude and latitude "); Serial.print(Lon/DEG_TO_RAD,3);

 Serial.print(" "); Serial.println(Lat/DEG_TO_RAD,3);

 Serial.println("year,month,day,local hour,minute,second,elevation,azimuth");

 year=2015;

 // Changes may be required in for… loop to get complete

 // daylight coverage in time zones farther west.

 for (hour=10; hour<=24; hour++) {

 JD_whole=JulianDate(year,month,day);

 JD_frac=(hour+minute/60.+second/3600.)/24.-.5;

 T=JD_whole-2451545; T=(T+JD_frac)/36525.;

 L0=DEG_TO_RAD*fmod(280.46645+36000.76983*T,360);

 M=DEG_TO_RAD*fmod(357.5291+35999.0503*T,360);

 e=0.016708617-0.000042037*T;

 C=DEG_TO_RAD*((1.9146-0.004847*T)*sin(M)+(0.019993-0.000101*T)*sin(2*M)+0.00029*sin(3*M));

 f=M+C;

5

 Obl=DEG_TO_RAD*(23+26/60.+21.448/3600.-46.815/3600*T);

 JDx=JD_whole-2451545;

 GrHrAngle=280.46061837+(360*JDx)%360+.98564736629*JDx+360.98564736629*JD_frac;

 GrHrAngle=fmod(GrHrAngle,360.);

 L_true=fmod(C+L0,TWOPI);

 R=1.000001018*(1-e*e)/(1+e*cos(f));

 RA=atan2(sin(L_true)*cos(Obl),cos(L_true));

 Decl=asin(sin(Obl)*sin(L_true));

 HrAngle=DEG_TO_RAD*GrHrAngle+Lon-RA;

 elev=asin(sin(Lat)*sin(Decl)+cos(Lat)*(cos(Decl)*cos(HrAngle)));

 // Azimuth measured eastward from north.

 azimuth=PI+atan2(sin(HrAngle),cos(HrAngle)*sin(Lat)-tan(Decl)*cos(Lat));

 Serial.print(year); Serial.print(","); Serial.print(month);

 Serial.print(","); Serial.print(day); Serial.print(", ");

 Serial.print(hour-zone); Serial.print(",");

 Serial.print(minute); Serial.print(","); Serial.print(second);

 // (Optional) display results of intermediate calculations.

 //Serial.print(","); Serial.print(JD_whole);

 //Serial.print(","); Serial.print(JD_frac,7);

 //Serial.print(","); Serial.print(T,7);

 //Serial.print(","); Serial.print(L0,7);

 //Serial.print(","); Serial.print(M,7);

 //Serial.print(","); Serial.print(e,7);

 //Serial.print(","); Serial.print(C,7);

 //Serial.print(","); Serial.print(L_true,7);

 //Serial.print(","); Serial.print(f,7);

 //Serial.print(","); Serial.print(R,7);

 //Serial.print(","); Serial.print(GrHrAngle,7);

 //Serial.print(","); Serial.print(Obl,7);

 //Serial.print(","); Serial.print(RA,7);

 //Serial.print(","); Serial.print(Decl,7);

 //Serial.print(","); Serial.print(HrAngle,7);

 Serial.print(","); Serial.print(elev/DEG_TO_RAD,3);

 Serial.print(","); Serial.print(azimuth/DEG_TO_RAD,3); Serial.println();

 }

}

void loop() {}

long JulianDate(int year, int month, int day) {

 long JD_whole;

 int A,B;

 if (month<=2) {

 year--; month+=12;

 }

 A=year/100; B=2-A+A/4;

 JD_whole=(long)(365.25*(year+4716))+(int)(30.6001*(month+1))+day+B-1524;

 return JD_whole;

}

6

